

Cam-Tite[®]

Top Entry Metal Ball Valves for Severe Service Applications

Centilic

24代

Contents

	Page
Introduction	3
Quality Assurance	4-5
Design Features	6-7
Seat Options	8-9
Ceramic Ball	10
Bonnet Options10	1-11
Special Services	12
Dry Chlorine Service	13
Special Installations Welding Without Disassembly Drain Bosses Extended Stems	14 14
Handle Options	15
Pressure / Temperature Ratings16	6-17
Flow Coefficients (Cvs)	18
Valve Operating Torques	19
Actuated Service	20

	Page
Compact Spring Return	21
Dimensions, Weights, Parts Lists22	2-25
Actuator Mounting Dimensions26	6-29
GV Series: Dimensions, Weights30)-33
GV Series: Actuator Mounting Dimensions34	-35
Extended and Severe Service Bonnet Dimensions	6-37
Service Guide	8-45
Exploded Views	46
Compliance with National Standards	47
Materials Standards	47
Ordering Information and Figure Numbers48	8-50

Introduction

Headquartered in Lancaster, PA, ITT Industries Engineered Valves' product line is as extensive as the many industries that we serve. Our 80 year heritage stems from diaphragm valves, of which we are the recognized leader.

Through the years, our product offering has grown extensively. Our corrosion handling expertise has provided the impetus for the design of quarter-turn valve products like our Cam-Tite[®] Ball Valve. By developing products such as the Cam-Tite that address specific problems encountered in industry, we continue to expand our commitment to remain a leader in flow control.

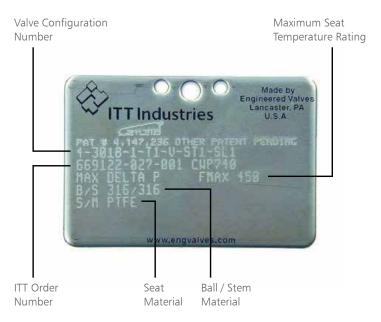
The performance of our products is surpassed only by the care taken in the many facets of manufacturing. Excellence in quality assurance, product reliability, and product safety will always remain paramount.

Quality Assurance Measures

Every Valve Is Tested

Each and every standard Cam-Tite Ball Valve receives a seat and hydrostatic shell test prior to shipment. In accordance with MSS-SP-72 and ASME B16.34, this testing includes an 80 PSI air under water seat test and a hydrostatic shell test conducted at 1.5 times the cold working pressure (CWP) rating of the valve. Any visible leakage indicated by the above test procedures, is cause for rejection. With valves prepared for special services, such as dry chlorine, alternate testing measures have been designed to assure product performance.

As further assurance of valve quality, other testing methods such as mass spectrometer or helium leak testing are available upon customer request.


Every Valve Is Tagged

A computer generated stainless steel tag is affixed to each Cam-Tite Ball Valve, pinned to the body. The first line designates the configuration number, which automatically correlates information unique to the pressure class of the valve; its size; body, seat, and seal materials; and other data specific to the valve.

The second line of the tag contains the original order number which is linked to the production traveler for the valve. This traveler contains information relating to the dates on which the valve was assembled, tested, inspected, and finally shipped.

This tag is important documentation to verify the valve configuration installed in the field.

Every Valve Is Inspected

Multiple inspections during the machining of component parts and during assembly ensure the high standards of quality for which the Cam-Tite Ball Valve is noted. Final assembly inspection is preceded by various work-in-progress dimensional checks and assembly process inspections.

Radiography

To augment visual inspection, x-ray examination of major castings is utilized for volumetric evaluation. This option is available upon customer request.

Liquid Penetrant Examination

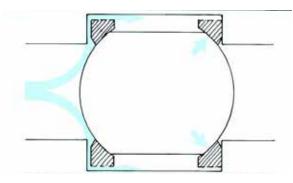
Surface discontinuities in castings can be evaluated through liquid (dye) penetrant evaluations. This quality assurance method is available upon customer request.

Positive Material Identification

Taking the guesswork out of material identification, an alloy analyzer can provide additional verification of the chemical composition of metallic components. Available upon request.

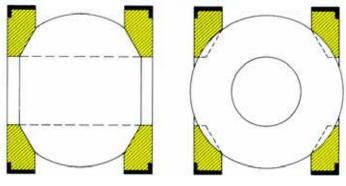
Certified Documentation

Positive material identification (PMI) Material certifications (CMTRs) Certified test reports Country of origin API 607 Qualified Chlorine Institute Pamphlet 6 Safety Integrity Level (SIL)


Beveled Edge Ball Design

The Geometry Is The Difference

First introduced in 1979, the Cam-Tite Ball Valve has developed a reputation for performance unequaled by conventional floating ball designs. The difference is in the ball, where around the port edge the spherical surface is cut away, forming a bevel that passes completely around the port opening. This is one of the most important design features of the Cam-Tite Ball Valve since it is the difference in the effective distance across the beveled surfaces and the distance across the spherical surface that actually energizes the seat when the valve is closed.


Conventional Floating Ball Design

Floating ball types often sacrifice performance as they depend on line pressure for a dependable seal.

Cam-Tite[®] Design

Unique non-spherical ball mechanically compresses both upstream and downstream seats to effect a tight, dependable seal independent of line pressure.

Valve Open

Valve Closed

Benefits

- Minimizes pressure on seats to reduce cold flow and extend seat life.
- Eliminates the problem of "breakaway torque" in valves that must rest in the open position for long periods.
- Assures positive sealing regardless of line pressure or pressure differential.
- Eliminates seat damage caused by the leading edge of the ball port cutting into the seat as the ball closes.

Superior Stem Seal Design

Low Torque Makes The Difference

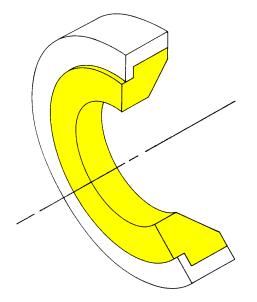

Most stem seals would work well if their only job was to contain the fluid or gas in the piping system. However, stem seals must also serve as bearings and hold the stem in alignment. High operating torques resulting in high lateral loading cause premature stem seal failure in conventional ball and plug valve designs. The Cam-Tite Ball Valve is by design a low torque valve, thereby minimizing lateral loading on the stem seals. In addition, the Cam-Tite stem seals are located further apart, closer to the ends of the stem, reducing the effects of lateral loading.

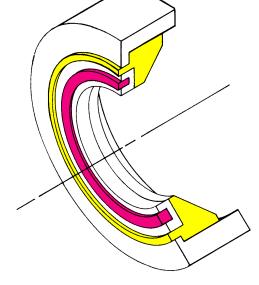
Cam-Tite Ball Valve Seal Assembly

Features and Benefits

- Low operating torque reduces lateral loads on stem seals for superior performance.
- Blow-out proof stem with special attention given to surface finish.
- Upper and lower seals provide balanced loading of stem seals.
- Belleville spring washers provide constant "live load" on stem seals, assuring a tight seal under varying service parameters.

Cam-Tite[®] Seat Design


PTFE Seats and Seals


All standard PTFE seats and seals are manufactured using unfilled, unpigmented PTFE. Virgin PTFE provides excellent resistance to the most aggressive chemicals and can handle media at both elevated and semi-cryogenic temperatures. Having no filler material, PTFE components are commonly specified for applications where attack of an added filler could occur. Typical applications would be fluorine based chemicals which would attack glass or highly oxidizing media which would deteriorate graphite.

Virgin PTFE is commonly used in Cam-Tite Ball Valves specified for hydrofluoric acid and fluorine gas service. Cam-Tite Ball Valves utilizing virgin PTFE seats and seals have a temperature range of -50° F to 450° F (-45° C to 232° C).

Reinforced PTFE Seats and Seals

For applications that require higher temperature resistance and improved hardness, the Cam-Tite[®] can be supplied with reinforced PTFE (RTFE) seats and stem seals. These components are glass reinforced and offer a temperature range of -60° F to 520°F (-51° C to 271° C), dependent upon process pressure conditions.

Firesafe Seats and Seals

For applications involving flammable fluids, the Cam-Tite®

Ball Valve is available with seat and seals designated

Firesafe. Most commonly supplied as reinforced PTFE,

Firesafe seats incorporate secondary metal-to-metal seat

rings and a special back seal for normal seat operation.

Stem seals combine the fire resistance of graphite with

Ultrahigh molecular weight (high density) polyethylene

to that of PTFE. Seats and seals of UHMWP provide

offers abrasion resistance and wear resistance far superior

exceptional service in high cycle applications. The material

has a practical temperature limit of 200 degrees F (93° C).

UHMWP Seat and Seal Components

a reinforced PTFE bearing. Cam-Tite® Ball Valves equipped

with these components meet the requirements of API 607.

Fire-Safe Seat

Standard Seat

PEEK Seat & Seal Components

PEEK is a tough high temperature engineered thermoplastic offering broad chemical resistance, excellent recovery from deformation, a high degree of dimensional stability, and exceptional resistance to hydrolysis. PEEK has outstanding abrasion resistance and is not sensitive to dynamic fatigue.

G2000 PEEK

Chemical

Since G2000 PEEK is a virgin crystalline polymer, its resistance to chemical attack is excellent. G2000 PEEK is recommended for most environments other than strong oxidizers. It is compatible with numerous acids, bases, and aliphatic and aromatic hydrocarbons.

Steam

Unlike most thermoplastics, G2000 PEEK will not hydrolyze and is recommended for use in steam service and other high-temperature aqueous processes.

Nuclear

G2000 PEEK offers excellent resistance to embrittlement when exposed to gamma radiation. This resistance is maintained in both acid and alkali media.

G3000 PEEK

G3000 PEEK combines the basic properties of the G2000 PEEK with that of carbon graphite and PTFE fillers, yielding a seating material with greater stability at higher temperatures and significantly reduced seating torque. Due to its filled content, G3000 PEEK is an excellent choice for high temperature applications, having a maximum temperature capability of 550° F (288° C).

Table 1

Comparison of typical physical properties

Property	G3000 PEEK	2000 PEEK	PTFE	PTFE Filled
Specific Gravity	1.48	1.32	2.20	2.19
Hardness (Shore)*	D85	D85	D50-55	D50-60
Tensile Strength (psi)	17,000	14,500	4000	2000
Tensile Elongation (%)	5	35	300	200
Flexural Strength (psi)	30,500	16,000	No break	-
Flexural Modulus (psi)	1.45M	550,000	90,000- 100,000	-
Shear Strength (psi) @ 100F @ 200F @ 300F @ 400F @ 500F	- - 7,750 - -	12,000 11,000 9,000 6,500 3,800	2,800 1,900 1,700 - -	3,400 2,750 2,500 - -
Impact Strength Notched IZOD Tensile (ft-Ibs/in)	9 -	1.6 -	- 30-200	2.7

*Rockwell "D" Scale

Ceramic Ball, Bonnet Options

Ceramic Ball

The Cam-Tite ceramic ball is an advanced engineering oxide ceramic, magnesia-partially stabilized zirconia (Mg-PSZ) which has extremely high strength and fracture toughness.

Features

- Corrosion Resistant*
- Impervious to gases
- Impact Resistant
- Withstands high temperature
- High thermal shock resistance
- Impervious to build-up on the ball
- Excellent choice where ferric chloride build-up is a problem

The ceramic ball can be used with any combination of the available stem and body materials for the Cam-Tite[®] Ball Valve.

Caged Bonnet Option

The patented "Caged Bonnet" was specifically designed to meet the needs of those hazardous applications where a quick and easy turnaround during scheduled maintenance is required. The uniquely designed caged bonnet assembly allows the repair and replacement of all internal components simply by removing the bonnet bolts and lifting off the bonnet assembly. The caged device is available on all bonnet configurations (standard, extended, severe service and bellows) in both nuclear and commercial configurations. The device utilizes a captured (caged) metal saddle that holds the ball, seat rings, seats, grounding springs and cover gasket in place. This device allows the removal and replacement of all components utilizing one subassembly.

*Consult factory for specific applications.

Caged bonnet shown on a standard bonnet. US Patent #5,152,502

Extended Bonnet

Cam-Tite Ball Valves can be furnished with extended bonnets for higher temperature or semi-cryogenic services. The extended bonnet allows the valve to be wrapped with insulation without interference from the hand lever and is interchangeable with the standard bonnet. This arrangement raises the stem seal further away from the flowing fluid, thereby reducing the effects of the temperature extremes. The stem is supported to minimize the possibility of galling or stem leakage. The extended bonnet permits the packing nut to extend beyond the valve insulation, thereby permitting stem seal adjustment without disturbing the insulation.

Severe Service Bonnet

The severe service bonnet option was specifically designed to meet the needs of those difficult applications where a true stuffing box is preferred. This design utilizes the extended bonnet as the primary component maintaining the conventional bottom stem seal, augmented by stacked Chevron V-ring packing at the top. The addition of an optional lantern ring and bonnet tap provides for the insertion of compatible lubricants into the packing, inert gas padding, or leak detection. Available in ANSI Class 150 through 600, the severe service bonnet option brings a modular approach to the stem sealing system of the Cam-Tite[®] Ball Valve.

Bellows Stem Seal

Cam-Tite[®] Ball Valves are also available with a bellows stem seal. This stem seal device provides a hermetic stem seal via a unique quarter-turn bellows design. The interface design for the bellows stem seal to the Cam-Tite Ball Valve was a joint effort between Engineered Valves and Kerotest in which the bellows assembly becomes integral to the bonnet of the valve. This allows for disassembly should replacement of internal components be required. The device can also be easily actuated. Bellows stem seals are available in ANSI Class 150 and 300 in a variety of materials.

Note: Standard, extended, severe service, and bellows stem seal bonnet operators are interchange within the same size and pressure class valve.

The Trusted Name for Severe Services

Since 1979 the Cam-Tite Ball Valve has become a performance leader in tough-to-handle services. The combination of the patented sealing arrangement and the superior stem seal design has ushered the Cam-Tite[®] into services where its design superiority has proven itself over plug valves and conventional floating ball type valves. Among the services where Cam-Tite[®] Ball Valves have emerged as the solution are the following:

- Dry Chlorine
- Phosgene
- Anhydrous HF
- Anhydrous Ammonia
- Anhydrous HCL
- High Vacuum
- PCL₃
- Steam
- VOCs

Anhydrous HF Acid Service

Numerous years of field application experience has led to a recommended construction for Cam-Tite[®] Ball Valves in anhydrous hydrofluoric acid. With a variety of body materials to choose from, valves prepared for HF service normally incorporate inconel 600 bonnet bolting, inconel 718 belleville washers, a stainless steel rotational stop (in applicable sizes), and virgin PTFE seats and seals. Additionally, all HF valves are specially assembled, cleaned, and tested. Specify "Prepared for HF Service" using code "HF" in the valve configuration number.

Oxygen Service

Cam-Tite[®] Ball Valves can be prepared for oxygen service. These valves are subjected to rigid procedures to ensure that they are free from all burrs, chips, and dirt. They are specially assembled, cleaned, tested and packaged. Valves prepared for oxygen are lubricated with DuPont Krytox[®] GPL 206 unless otherwise specified. Order valves "Prepared for Oxygen Service" using "OX" in the configuration number.

Vacuum Service

The Standard Cam-Tite Ball Valve is suitable for vacuum services down to 20 microns absolute. For vacuum conditions below 20 microns absolute high vacuum valves can be supplied. High vacuum service valves are manufactured with special attention to seat and seal tolerances and finishes and are specially cleaned and packaged. These valves have leakage rates less than $1 \times 10-7$ STD. CC/sec as verified by a mass spectrometer test. Specify valves "Prepared for High Vacuum Service" using code "VAC" in the configuration number.

See pages 48-50 for additional ordering information for Cam-Tite[®] Ball Valves prepared for the above special services.

The Proven Leader in Dry Chlorine

In dry chlorine service, valves must be capable of absolute shutoff while maintaining piping system integrity (no stem seal leakage). For cost-effectiveness, they must also offer long service life. Simple enough, yet the punishing nature of chlorine handling has defeated many types of chlorine valves and forced users to accept compromises in performance and safety. Such compromises are no longer necessary. Thousands of installed Cam-Tite[®] Valves are demonstrating their superiority, based on three important features:

- **Patented Ball Design** Assures zero leakage through the valve.
- Superior Stem Seals Prevents leakage to the atmosphere.
- Positive Valve Body Vent

Positive Relief

In accordance with the Chlorine Institute Pamphlet #6, all dry chlorine ball valves must be equipped to relieve excess pressure in the ball cavity toward the direction of high pressure. This is an important safety feature, ensuring that excess pressure in a closed valve will bleed off harmlessly. Cam-Tite® Ball Valves prepared for dry chlorine service are equipped with a positive vent in the valve body as opposed to competitive designs that rely on self-relieving seats or vents through the ball or plug. Experience has proven that self-relieving seats do not provide predictable performance.

Placing the vent in the body eliminates the possibility of installing a vented ball or plug backwards. A positive body vent is the only way to provide predictable, repeatable safety relief.

Note: Cam-Tite Ball Valves supplied with vented bodies are considered unidirectional with regards to shut-off.

Chlorine Valve Preparation

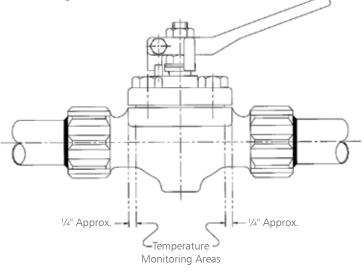
Preparation in accordance with the Chlorine Institute Pamphlet #6 includes:

- A relief vent in the body to bypass the upstream seat.
- A cast arrow on the body to indicate the direction of pressure tightness.
- Special cleaning of all valve components.
- Special testing for seat tightness and relief port venting.
- Special packaging and marking.

Cam-Tite[®] Ball Valves for dry chlorine service are usually supplied with cast carbon steel (ASTM A216 Gr. WCB) bodies, monel ball and stem, and reinforced PTFE seats, seals and cover gasket. Other materials, including alloy 20, hastelloy, and ceramic are commonly used in chlorine services and are available as required.

When ordering valves "Prepared for Dry Chlorine Service," specify code "CLV" in the configuration number.

Valve Body Vent for Positive Pressure Relief



Special Installations

Welding Without Disassembly

Cam-Tite[®] Ball Valves can be welded into the pipeline without disassembly provided certain procedures and precautions are followed. The valve must be in the open position during welding and should remain open until it cools to ambient temperature. Welding procedures in accordance with Section IX of the ASME Boiler and Pressure Vessel Code should be utilized. In addition. a Tempilstik (350° F for PTFE and RTFE seats and seals or 200° F for UHMWP seats and seals) must be used to monitor the temperature at the seat / gasket area. This is the area in line with the body / cover flange as shown above. Welding should be controlled such that the maximum temperature in this area remains below that of the rated Tempilstik. A tremendous amount of time and trouble associated with the dismantling and reassembly of welded valves is avoided, but more importantly, the integrity of the factory hydrostatic and seat testing is maintained when following these procedures.

See page 47 for weld end machining standards.

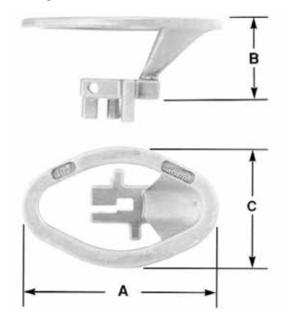
Drilled, Tapped And Plugged Drain Bosses

All Cam-Tite[®] Ball Valves have an integrally cast drain boss on the bottom side of the body. This drain boss can be drilled, tapped, and plugged if draining of the valve cavity is required. The standard drilling is 1/4" NPT on 1/2" through 2" sizes and 1/2" NPT on 3" through 6" sizes. Carbon steel valves are furnished with ASTM A193 GR B7 plugs while stainless steel valves are furnished with ASTM A193 GR B8 plugs. (Consult the factory for specifications of drain plugs supplied on other body materials.) Specify valves "Prepared with Tapped and Plugged Drain Port" using code "D" in the configuration number when ordering.

Stem Extensions

The Cam-Tite[®] Ball Valve can be supplied with a variety of designs to support applications which require extended stems. Stem extensions can be provided in carbon steel and stainless steel materials of construction and can be specified in a wide range of lengths for complete versatility.

See pages 48-50 for information on ordering stem extensions for Cam-Tite[®] valves.



Handle Options

Oval Safety Handwheels

Oval safety handwheels are available on Cam-Tite[®] Ball Valves ¹/₂" through 2". These handwheels are used where the standard hand levers could be accidentally bumped open or closed. The oval safety handwheels are either cast carbon steel or cast stainless steel. The oval shape provides quick, easy identification of valve position.

Specify "Prepared with Oval Safety Handwheel" using code "HD2" (carbon steel) or code "HD3" (stainless steel) in the configuration number.

DIMENSIONS (INCH)

Valve Size	А	В	с
$1/2^{"} = 1^{"}$	5.0	2.03	3.0
1 ¹ /2"	6.5	2.03	4.0
2"	6.5	2.03	4.0

DIMENSIONS (MM)

1/2'' = 1''	127	52	76
11⁄2"	165	52	102
2"	165	52	102

Spring Return Handle Options

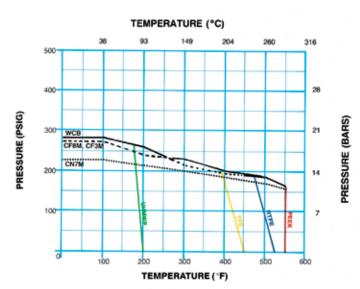
The Cam-Tite Ball Valve can be supplied with either a manual spring return handle (dead man's handle) or a fire-safe fusible linked spring return handle for safety shut-off of manually operated valves.

Chain Operator Options

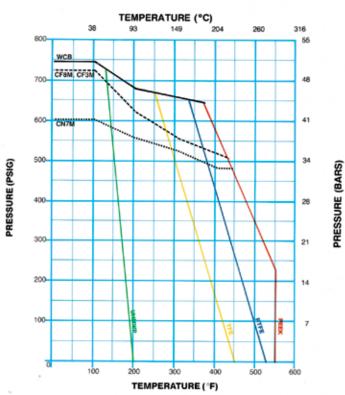
The Cam-Tite Ball Valve can be provided with a T-handle and chain for operation in services where access to the valve is limited. The T-handle operator can be supplied for installation in either vertical or horizontal pipelines and is available in both carbon steel and stainless steel construction.

Lock Out Device Option

OSHA 1910.147 requires that valves in certain applications have a method of being locked out in the closed position to prevent unauthorized opening. The Cam-Tite® Ball Valve can be supplied with a locking device which will lock the valve in either the open or closed position. The standard locking device is constructed of stainless steel and can be provided on any of the optional bonnet designs. Specify "Prepared with Locking Device" using code "LDS" in the configuration number for the valve.

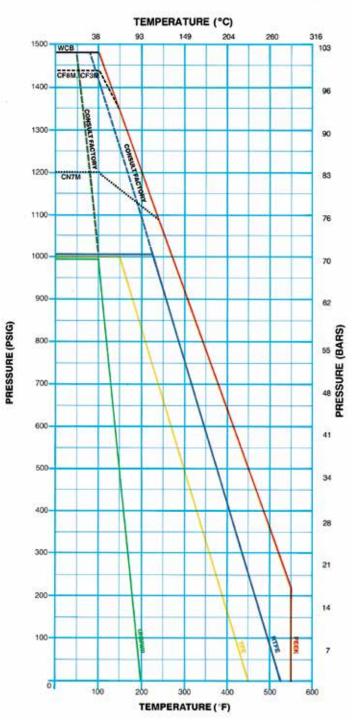

See pages 48-50 for additional ordering instructions for Cam-Tite[®] valves prepared with the above handle options.

Pressure / Temperature Ratings


Class 150 Flanged, Buttweld

Cold Working Pressure (PSIG)	
Carbon Steel - WCB	285
Stainless Steel - CF8M, CF3M	275
Alloy 20 - CN7M	230
Monel M-35-1	230
Hastelloy CW-6M	290
Titanium - B367 Gr C3	265

Class 150–300 Screwed, Socket Weld Class 300 Flanged, Buttweld


Cold Working Pressure (PSIG)	
Carbon Steel - WCB	740
Stainless Steel - CF8M, CF3M	720
Alloy 20 - CN7M	600
Monel M-35-1	600
Hastelloy CW-6M	750
Titanium - B367 Gr C3	695

Class 600 Flanged, Buttweld Screwed, Socket Weld

Cold Working Pressure (PSIG)	
Carbon Steel - WCB	1480
Stainless Steel - CF8M, CF3M	1440
Alloy 20 - CN7M	1200
Monel M-35-1	1200
Hastelloy CW-6M	1500
Titanium - B367 Gr C3	1390

Note: Consult factory for pressure / temperature recommendations for 3" and larger Class 600 fire-safe seats

Flow Coefficients (Cv)

Cv = Flow of water in US gallons per minute through the valve with a one psi pressure drop.

Note: Consult factory for recommendations on valves intended for throttling or modulating services.

Class 150 Flanged and Buttweld

Degrees Open From Closed	10°	20°	30°	40°	50°	60°	70°	80°	90°
1/2"	_	-	0.1	0.3	0.9	1.4	2.2	3.5	8.4
³ /4"		_	0.2	1.2	2.2	3.7	5.4	8.0	17.0
1"	_	_	0.2	1.1	2.5	4.6	7.6	12.8	30.0
1 ¹ /2"	_	_	1.0	3.0	5.5	11.0	17.5	33.5	73.0
2"	_	0.5	3.0	6.5	11.5	21.0	39.0	81.5	160.5
3"	_	0.5	3.7	12.4	22.9	42.4	81.5	181.0	355.0
4"		1.1	7.8	26.1	48.4	89.7	172.5	383.4	751.6
6"	_	_	_	_	-	_	_	_	1500

Class 300 Flanged and Buttweld

Degrees Open From Closed	10°	20°	30°	40°	50°	60°	70°	80°	90°
1/2"		-	0.1	0.3	0.7	1.2	2.1	3.8	8.4
³ /4"	-	-	0.2	0.8	1.6	2.8	5.0	9.5	18.2
1"	-	-	0.2	1.0	2.4	4.6	8.0	15.6	31.6
1 ¹ /2"	-	1.0	2.5	5.5	10.0	17.5	29.0	51.0	80.0
2"	-	1.0	3.0	6.5	13.5	22.0	39.0	72.0	163.0
3"	-	2.5	8.4	17.9	34.5	57.5	99.2	180.3	360.5
4"	-	5.3	17.8	37.9	73.0	121.7	209.9	381.6	763.3
6"	_	_	_	_	_	_	_	_	1500.5

Class 600 Flanged and Buttweld

Degrees Open From Closed	10°	20°	30°	40°	50°	60°	70°	80°	90°
1/2"	_	_	0.1	0.3	0.8	1.3	2.2	3.5	8.5
³ /4"	_	-	0.2	0.9	1.9	3.4	5.6	8.2	17.0
1"	_	-	0.2	0.8	1.9	3.8	7.0	14.2	28.4
1 ¹ / ₂ "	_	-	0.5	3.5	9.5	17.0	31.0	55.0	81.0
2"	_	0.9	3.0	6.0	11.5	21.0	39.0	87.0	163.0
3"	-	1.4	4.7	11.2	28.1	51.1	94.6	197.1	365.0
4"	-	2.9	9.9	23.6	59.1	107.4	198.9	414.5	767.5

Screwed and Socket Weld - All Classes

Degrees Open From Closed	10°	20°	30°	40°	50°	60°	70°	80°	90°
1/2"	_	_	0.1	0.2	0.7	1.2	2.1	3.6	8.4
³ /4"	-	_	0.2	0.7	1.6	2.9	5.0	8.5	17.0
1"	-	_	0.5	0.7	2.0	3.8	6.8	12.5	30.8
1 ¹ /2"	-	1.0	2.5	5.0	9.5	15.5	24.5	45.0	78.4
2"	-	1.0	3.0	6.0	11.5	21.0	38.5	76.5	158.5
3"	_	2.9	8.4	16.8	32.3	53.9	96.3	181.7	349.5

Valve Operating Torques

The actual amount of torque required to operate a valve is dependent upon many variables, such as line pressure, temperature, type of fluid, and frequency of operation. The following tables are based on the maximum breakaway / closing torque requirements of a Cam-Tite[®]

UNFILLED PTFE

PRESSURE DR	PRESSURE DROP ACROSS VALVE										
SIZE	Class 600										
1/2", 3/4", 1"	75 in-lb	75 in-lb	75 in-lb								
1 1/2"	85 in-lb	85 in-lb	85 in-lb								
2"	175 in-lb	175 in-lb	175 in-lb								
3"	435 in-lb	435 in-lb	450 in-lb								
4"	525 in-lb	770 in-lb	925 in-lb								
6"	1270 in-lb	1615 in-lb	N/A								

REINFORCED PTFE (RTFE)

PRESSURE DROP ACROSS VALVE										
SIZE	SIZE Class 150 Class 300 Class 6									
1/2", 3/4", 1"	105 in-lb	105 in-lb	105 in-lb							
1 1/2"	110 in-lb	110 in-lb	110 in-lb							
2"	220 in-lb	220 in-lb	235 in-lb							
3"	590 in-lb	590 in-lb	640 in-lb							
4"	695 in-lb	895 in-lb	1195 in-lb							
6"	1355 in-lb	1730 in-lb	N/A							

G3000 PEEK

PRESSURE DROP ACROSS VALVE										
SIZE	SIZE Class 150 Class 300									
1/2", 3/4", 1"	195 in-lb	195 in-lb	195 in-lb							
1 1/2"	240 in-lb	265 in-lb	265 in-lb							
2"	340 in-lb	375 in-lb	695 in-lb							
3"	1285 in-lb	1345 in-lb	1705 in-lb							
4"	1400 in-lb	1610 in-lb	2665 in-lb							
6"	N/A	N/A	N/A							

Maximum Allowable Stem Torques

The following torque values represent the maximum allowable torque which can be applied to a specific valve size and stem material before permanent damage to the stem occurs. Ball Valve handling a clean, particle free liquid. For valves used in heavy liquids, high particulate fluids, gases, or sub-zero temperatures, consult the factory for actual torque recommendations.

FIRESAFE REINFORCED PTFE

PRESSURE DROP ACROSS VALVE										
SIZE	Class 150	Class 300	Class 600							
1/2", 3/4", 1"	115 in-lb	115 in-lb	115 in-lb							
1 1/2"	150 in-lb	150 in-lb	160 in-lb							
2"	325 in-lb	325 in-lb	350 in-lb							
3"	735 in-lb	750 in-lb	1700 in-lb							
4"	890 in-lb	1545 in-lb	2535 in-lb							
6"	2300 in-lb	2650 in-lb	N/A							

UHMW POLYETHYLENE

PRESSURE DROP ACROSS VALVE											
SIZE	Class 150	Class 300	Class 600								
1/2", 3/4", 1"	95 in-lb	95 in-lb	95 in-lb								
1 1/2"	120 in-lb	120 in-lb	120 in-lb								
2"	260 in-lb	260 in-lb	260 in-lb								
3"	620 in-lb	620 in-lb	785 in-lb								
4"	795 in-lb	795 in-lb	1080 in-lb								
6"	1555 in-lb	1555 in-lb	N/A								

G2000 PEEK

PRESSURE DROP ACROSS VALVE										
SIZE	SIZE Class 150 Class 300 Class 6									
1/2", 3/4", 1"	195 in-lb	195 in-lb	195 in-lb							
1 1/2"	250 in-lb	250 in-lb	250 in-lb							
2"	375 in-lb	555 in-lb	960 in-lb							
3"	1400 in-lb	1595 in-lb	2500 in-lb							
4"	2055 in-lb	2775 in-lb	3960 in-lb							
6"	N/A	N/A	N/A							

These values should not be exceeded when sizing power actuators for application with the Cam-Tite[®] Ball Valve.

	STEM MATERIAL												
SIZE	316 ss	Monel	Alloy 20	Hastelloy 276	Inconel 625	Nickel	Titanium	Inconel 718					
1/2", 3/4", 1"	460 in-lb	390 in-lb	275 in-lb	275 in-lb	275 in-lb	275 in-lb	320 in-lb	550 in-lb					
1 1/2"	590 in-lb	505 in-lb	355 in-lb	355 in-lb	355 in-lb	355 in-lb	415 in-lb	700 in-lb					
2"	1040 in-lb	1110 in-lb	785 in-lb	785 in-lb	785 in-lb	785 in-lb	915 in-lb	1560 in-lb					
3"	4660 in-lb	4300 in-lb	2510 in-lb	2940 in-lb	4300 in-lb	3580 in-lb	5020 in-lb	8600 in-lb					
4"	4800 in-lb	5760 in-lb	3360 in-lb	3940 in-lb	5760 in-lb	4800 in-lb	6730 in-lb	11500 in-lb					
6"	14500 in-lb	29100 in-lb	17000 in-lb	19900 in-lb	29100 in-lb	24310 in-lb	34000 in-lb	50400 in-lb					

Consult factory for stem materials not listed above.

Actuated Service

By virtue of its low torque design, the Cam-Tite[®] Ball Valve is an inexpensive and easy valve to actuate. The lowtorque feature allows the valve to be actuated with a much smaller and more cost effective actuator. This means you have the superior performance of the Cam-Tite[®] Ball Valve at a lower package cost than with conventional ball or plug valves.

When it comes to actuated "isolation" valves, the Cam-Tite[®] is truly unique. To begin with, since there is virtually no load on the seats when the valve rests in the open position, the seats remain in prime condition waiting to be called into service. Since there is no "breakaway" when moving from the open to closed positions, the actuator is set into motion without opposing load. Only when the valve is essentially closed does the valve operating torque reach design peak. It is nice to know that when peak load is reached, the valve is already closed.

Engineered Valves can supply actuator packages utilizing the Compact rack and pinion actuator or any other actuator suited to your needs. Actuator packages are completely assembled and tested by Engineered Valves to meet our highest standards of quality.

Typical actuator mounting is accomplished either by utilizing the flange pads on flanged end valves or by replacing the cover bolts with studs and double nuts on socket, threaded and buttweld configurations. Both methods allow the removal of the actuator without disturbing the body / cover seal. If field mounting of actuation is necessary, the following guidelines should be followed:

- Use flange pad mounting when available. If not, then machined studs must be used – not threaded rod.
- It is recommended that if the bonnet is loosened, then the cover gasket should be replaced.
- The rotational stop pin in the cover (3", 4" and 6") should be removed. Open / closed positioning should be accomplished by proper adjustment of the actuator travel stops.

See pages 22-37 for actuator mounting details.

Actuator Sizing

Compact Spring Return

PTFE (ST1)

Valve Size DN	DN	Class 150		Class 300		Class 600	
	60 psi / 4 bar	80 psi / 5.5 bar	60 psi / 4 bar	80 psi / 5.5 bar	60 psi / 4 bar	80 psi / 5.5 bar	
1/2" - 1"	15-25	C25-2A2B	C20-2B	C25-2A2B	C20-2B	C25-2A2B	C20-2B
1.5	40	C25-2A2B	C20-2B	C25-2A2B	C20-2B	C25-2A2B	C20-2B
2	50	C30-2A2B	C25-2C	C30-2A2B	C25-2C	C35-2A2B	C25-2C
3	80	C45-2A2B	C35-2C	C45-2A2B	C35-2C	C35-2A2B	C35-2C
4	100	C45-2A2B	C35-2C	C60-2A2B	C45-2C	C60-2A2B	C45-2C
6	150	C60-2A2B	C60-2C	C60-2A2B	C60-2C		

RTFE (ST2)

Valve Size DN	Class 150		s 150	Class 300		Class 600	
	60 psi / 4 bar	80 psi / 5.5 bar	60 psi / 4 bar	80 psi / 5.5 bar	60 psi / 4 bar	80 psi / 5.5 bar	
1/2" - 1"	15-25	C25-2A2B	C25-2C	C25-2A2B	C25-2C	C25-2A2B	C25-2C
1.5	40	C25-2A2B	C25-2C	C25-2A2B	C25-2C	C25-2A2B	C25-2C
2	50	C30-2A2B	C30-2C	C30-2A2B	C30-2C	C35-2A2B	C30-2C
3	80	C45-2A2B	C45-2C	C45-2A2B	C45-2C	C45-2A2B	C45-2C
4	100	C45-2A2B	C45-2C	C60-2A2B	C45-2C	C60-2A2B	C60-2C
6	150	C60-2A2B	C60-2C	C75-2A2B	C60-2C		

G3000 PEEK (ST7)

Value Size	DN	Class 150		Class 300		Class 600	
Valve Size	DN	60 psi / 4 bar	80 psi / 5.5 bar	60 psi / 4 bar	80 psi / 5.5 bar	60 psi / 4 bar	80 psi / 5.5 bar
1/2" - 1"	15-25	C30-2A2B	C25-2C	C30-2A2B	C30-2C	C30-2A2B	C30-2C
1.5	40	C35-2A2B	C25-2C	C35-2A2B	C30-2C	C35-2A2B	C30-2C
2	50	C35-2A2B	C30-2C	C45-2A2B	C35-2C	C45-2A2B	C45-2C
3	80	C60-2A2B	C60-2C	C60-2A2B	C60-2C	C75-2A2B	C60-2C
4	100	C60-2A2B	C60-2C	C60-2A2B	C60-2C	C75-2A2B	C75-2C

Fire-Safe RTFE, PTFE (ST3, ST4)

Valve Size DN	Class 150		Class 300		Class 600		
	60 psi / 4 bar	80 psi / 5.5 bar	60 psi / 4 bar	80 psi / 5.5 bar	60 psi / 4 bar	80 psi / 5.5 bar	
1/2" - 1"	15-25	C25-2A2B	C25-2C	C25-2A2B	C25-2C	C25-2A2B	C25-2C
1.5	40	C30-2A2B	C25-2C	C30-2A2B	C25-2C	C30-2A2B	C25-2C
2	50	C35-2A2B	C35-2C	C35-2A2B	C35-2C	C35-2A2B	C35-2C
3	80	C45-2A2B	C45-2C	C45-2A2B	C45-2C	C75-2A2B	C60-2C
4	100	C60-2A2B	C45-2C	C60-2A2B	C60-2C	C75-2A2B	C75-2C
6	150	C75-2A2B	C60-2C	C75-2A2B	C75-2C		

UHMW Polyethylene (ST5)

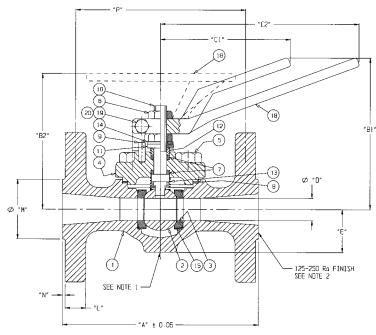
Valve Size DN	Class 150		Class 300		Class 600		
	DIN	60 psi / 4 bar	80 psi / 5.5 bar	60 psi / 4 bar	80 psi / 5.5 bar	60 psi / 4 bar	80 psi / 5.5 bar
1/2" - 1"	15-25	C25-2A2B	C25-2C	C25-2A2B	C20-2C	C25-2A2B	C20-2B
1.5	40	C25-2A2B	C25-2C	C30-2A2B	C25-2C	C25-2A2B	C25-2C
2	50	C35-2A2B	C30-2C	C35-2A2B	C30-2C	C35-2A2B	C30-2C
3	80	C45-2A2B	C45-2C	C45-2A2B	C45-2C	C60-2A2B	C45-2C
4	100	C60-2A2B	C45-2C	C60-2A2B	C45-2C	C60-2A2B	C60-2C
6	150	C60-2A2B	C60-2C	C60-2A2B	C60-2C		

G2000 PEEK (ST6)

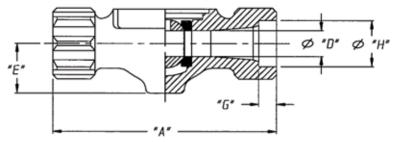
Valve Size	DN	Class	s 150	Class	s 300	Class	600
valve Size	DN	60 psi / 4 bar	80 psi / 5.5 bar	60 psi / 4 bar	80 psi / 5.5 bar	60 psi / 4 bar	80 psi / 5.5 bar
1/2" - 1"	15-25	C30-2A2B	C25-2C	C30-2A2B	C30-2C	C30-2A2B	C30-2C
1.5	40	C35-2A2B	C30-2C	C35-2A2B	C30-2C	C35-2A2B	C30-2C
2	50	C45-2A2B	C35-2C	C45-2A2B	C45-2C	C60-2A2B	C45-2C
3	80	C60-2A2B	C60-2C	C60-2A2B	C60-2C	C75-2A2B	C75-2C
4	100	C75-2A2B	C60-2C	C75-2A2B	C75-2C	NA	C75-2C

Note:

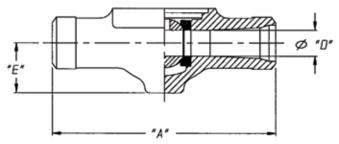
- 1. Actuator sizing based on 20% safety factor.
- 2. Use higher safety factor when handling gases, viscous liquids and crystallizing media.

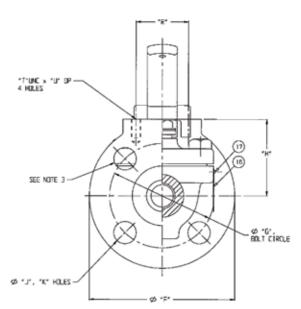

Double Acting

ACTUATOR		0	PERATING	PRESSURE (PSI)	
SIZE	20	40	60	80	100	120
15	39	79	119	160	199	239
20	79	158	238	318	398	478
25	160	320	480	640	800	960
30	267	537	806	1074	1343	1611
35	471	941	1412	1882	2353	2824
45	907	1813	2719	3626	4532	5438
60	2149	4298	6446	8595	10744	12893
75	3765	7530	11295	15060	18825	22590

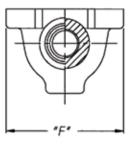


Dimensions, Weights, and Parts Lists 1/2"-2" Valves


Flanged Body



Socket Weld and Threaded Body



Buttweld Body

- 1. Body boss can be drilled, tapped, and plugged.
- 2. End machining meets ASME B16.5 for flanged ends.
- 3. $\frac{1}{2}$ " and $\frac{3}{4}$ " 150 lb class flanged bolt holes are tapped $\frac{1}{2}$ " – 13 UNC class 2B. Top two holes are blind drilled and tapped.
- 4. The design meets ASME B16.34, MSS-SP 72 and ASME B16.10.
- 5. Valve is shown in the open position. Clockwise rotation of stem closes the valve.

Flanged Body Dimensions in inches and (mm)

VALVE	PRESSURE	"A"	"B1"	"B2"	"C1"	"C2"	"D"	"E"	"F"	'G'	"H"	ינ"	"K"	"L"	"M"	"N"	"P"	"R"	"T"	"U"	WEI	GHT
SIZE	CLASS	DIM	DIM	DIM	DIM	DIM	DIM	DIM	DIM	DIM	DIM	DIM	"К"	DIM	DIM	DIM	DIM	DIM	DIM	DIM	LBS	KG
	150#	4.25 (113.0)							3.50 (88.9)	2.38 (60.4)	1.94 (49.3)	-		0.38 (9.6)		0.06	3.62 (91.9)				6.9	3.1
1/2"	300#	5.50 (139.7)					0.62 (15.7)		3.75	2.62	2.06	0.63		0.50 (12.7)	1.38 (35.0)	(1.5)	4.88 (124.0)				7.9	3.6
	600#	6.50 (165.1)							(95.2)	(66.5)	(52.3)	(16.0)		0.61 (15.5)		0.25 (6.4)	5.38 (136.6)	2.00	1/4-20	0.38	9.0	4.1
	150#	4.62 (117.3)							3.88 (98.6)	2.75 (69.8)	2.12 (53.8)	-		0.41 (10.4)		0.06	4.00 (101.6)	(50.8)	UNC	(9.6)	8.0	3.6
3/4"	300#	6.00 (152.4)	5.10 (129.5)	4.62 (117.3)	4.35 (110.5)	-		1.44 (36.6)	4.62	3.25	2.50	0.75		0.56 (14.2)	1.69 (42.9)	(1.5)	5.31 (134.9)				8.0	3.0
	600#	7.50 (190.5)					0.75		(117.3)	(82.6)	(63.5)	(19.0)		0.67 (17.0)		0.25 (6.4)	6.31 (160.3)				11.5	5.2
	150#	5.00 (127.0)					(19.0)		4.25 (108.0)	3.12 (79.2)		0.63 (16.0)	4	0.41 (10.4)		0.06	4.19 (106.4)				9.0	4.1
1"	300#	6.50 (165.1)							4.88	3.50	2.56 (65.0)	0.75		0.69 (17.5)	2.00 (50.8)	(1.5)	5.69 (144.5)				12.0	5.4
	600#	8.50 (215.9)							(124.0)	(88.9)		(19.0)		0.74 (18.8)		0.25 (6.4)	7.25 (184.2)	1.75			13.0	5.8
	150#	6.50 (165.1)							5.00 (127.0)	3.88 (98.6)	3.00 (76.2)	0.63 (16.0)		0.56 (14.2)		0.06	5.62 (142.7)	(44.4)			14.5	6.5
1-1/2"	300#	7.50 (190.5)	5.65 (143.5)	5.16 (131.1)	5.14 (130.6)	-	1.12 (28.4)	1.72 (43.7)	6.12	4.50	3.31	0.88		0.81 (20.6)	2.88 (73.2)	(1.5)	65.56 (166.6)		5/16-18 UNC	0.62 (15.7)	22.0	9.9
	600#	9.50 (241.3)								(114.3)		(22.4)		0.93 (23.6)		0.25 (6.4)	8.00 (203.2)				24.0	10.8
	150#	7.00 (177.8)							6.00 (152.4)	4.75 (120.6)	3.12 (79.2)			0.62 (15.7)		0.06	5.19 (157.2)				23.5	10.6
2"	300#	8.50 (215.9)	6.60 (167.6)	5.54 (140.7)	-	8.65 (219.7)	1.50 (38.1)	2.06 (52.3)	6.50	5.00	3.75	0.75 (19.0)		0.88 (22.4)	3.62 (91.9)	(1.5)	7.80 (190.5)	2.25 (57.2)			30.0	13.5
	600#	11.50 (292.1)							(165.1)		(95.2)		8	1.05 (26.7)		0.25 (6.4)	9.88 (251.0)				34.0	15.3

Socket Weld and Threaded Body

VALVE	PRESSURE	"A"	"B1"	"B2"	"C1"	"C2"	"D"	"E"	"F"	"G"	"H"	WE	GHT
SIZE	CLASS	DIM	DIM	DIM	DIM	DIM	DIM	DIM	DIM	DIM	DIM	LBS	KG
1/2"		5.50 (139.7)					0.62 (15.7) - SOCKETWELD 0.70 (17.8) - THREADED			0.39 (9.9)	0.86 (21.8)	5.7	2.6
3/4"]	6.00 (152.4)	5.10 (129.5)	4.62 (117.3)	4.35 (110.5)	-	.075	1.44 (36.6)	3.44 (87.4)	0.51 (13.0)	1.07 (27.2)	5.8	2.6
1"	150-500#	6.50 (165.1)					(19.0)			0.51 (13.0)	1.34 (34.0)	6.5	2.9
1-1/2"		7.50 (190.5)	5.65 (143.5)	5.16 (131.1)	5.14 (13.6)	-	1.12 (28.4)		3.81 (96.8)	0.51 (13.0)	1.92 (48.8)	13.0	5.8
2"		8.50 (215.9)	6.60 (167.6)	5.54 (140.7)	-	8.65 (219.7)	1.50 (38.1)	2.06 (52.3)	4.81 (122.2)	0.63 (16.0)	2.41 (61.2)	18.0	8.1

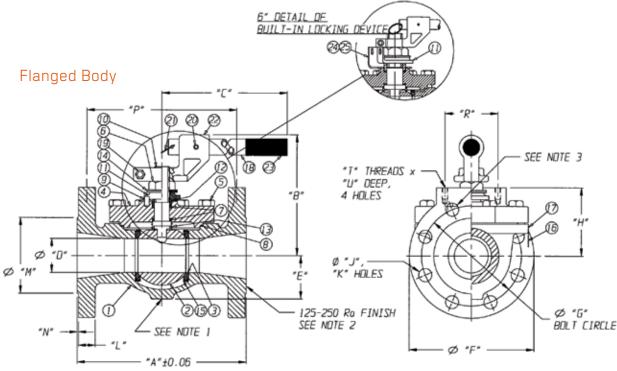
Buttweld Body

VALVE	PRESSURE	"A"	"B1"	"B2"	"C1"	"C2"	"D"	"E"	"F"	WEI	GHT
SIZE	CLASS	DIM	DIM	DIM	DIM	DIM	DIM	DIM	DIM	LBS	KG
1/2"	150-300#	5.50 (139.7)					0.56			5.3	2.4
1/2	600#	6.50 (165.1)					(14.2)			5.7	2.6
3/4"	150-300#	6.00 (152.4)	5.10	4.62	4.35		0.68 (17.3)	1.44	3.44	5.5	2.5
5/4	600#	7.50 (190.5)	(129.5)	(117.3)	(110.5)	-	0.62 (15.7)	(36.6)	(87.4)	7.0	3.2
1"	150-300#	6.50 (165.1)					0.75			6.0	2.7
	600#	8.50 (215.9)					(19.0)			6.5	2.9
1-1/2"	150-300#	7.50 (190.5)	5.65	5.16	5.14		1.12	1.72	3.81	13.0	5.8
1-1/2	600#	9.50 (241.3)	(143.5)	(131.1)	(130.5)	-	(28.4)	(43.7)	(96.8)	14.0	6.3
2"	150-300#	8.50 215.9)	6.50	5.54		8.65	1.50	2.06	4.81	17.0	7.6
2	600#	11.50 (292.1)	(167.6)	(140.7)	-	(219.7)	(38.1)	(52.3)	(122.2)	18.5	8.3

Bill of Materials - Base Valve with Standard Cover

ITEM	QTY	DESCRIPTION	CARBON STEEL	STAINLESS STEEL	ALLOY 20	HASTELLOY
1	1	Body	CS ASTM A216 GR WCB 🛕	SS ASTM A351 GR CF8M	SS ASTM A351 GR CN7M	HAST ASTM A494 CW6M 🛷
2	1	Ball	SS ASTM A276 TYPE 316 🛆	SS ASTM A276 TYPE 316	SS ASTM B473 N08020	HAST ASTM B574 10276
X 3	2	Seat ቀ	PTFE	PTFE	PTFE	PTFE
4	1	Cover	CS ASTM A216 GR WCB	SS ASTM A351 GR CF8M	SS ASTM A351 GR CN7M	HAST ASTM A494 CW6M
5	4	Screw, Hex HD.Cap	CS ASTM A193 GR B7	SS ASTM A193 GR B8	SS ASTM A193 GR B8	SS ASTM A193 GR B8
6	2	Nut, Hex Jam	CS	CS	CS	CS
* 7	¥ 2	Seal, Stem ቀ	PTFE	PTFE	PTFE	PTFE
X 8	1	Gasket ቀ	PTFE	PTFE	PTFE	PTFE
9	1	Pin, Grooved	SS	SS	SS	SS
10	1	Stem	SS ASTM A276 TYPE 316	SS ASTM A276 TYPE 316	SS ASTM B473 N08020	HAST ASTM B574 10276
11	1	Washer, Flat	CS ASTM A659 GR1018	CS ASTM A659 GR1018	CS ASTM A659 GR1018	CS ASTM A659 GR1018
12	1	Ring, Gland	SS ASTM A276 TYPE 316	SS ASTM A276 TYPE 316	SS ASTM A276 TYPE 316	SS ASTM A276 TYPE 316
13	1	Spring	SS ASTM A313 TYPE 316	SS ASTM A313 TYPE 316	INCONEL ASTM B637, X750	INCONEL ASTM B637, X750
14	2	Washer, Belleville	CS ASTM A684	CS ASTM A684	CS ASTM A684	CS ASTM A684
* 15	2	Ring, Seat	SS ASTM A240 TYPE 316	SS ASTM A240 TYPE 316	ALLOY 20 ASTM B463 N08020	HAST ASTM B574 10276
16	1	Plate, Ident.	SS ASTM A240 TYPE 304	SS ASTM A240 TYPE 304	SS ASTM A240 TYPE 304	SS ASTM A240 TYPE 304
17	2	Screw, Drive	CS	CS	CS	CS
18	1	Handle	CS ASTM A216 GR WCB	CS ASTM A216 GR WCB	CS ASTM A216 GR WCB	CS ASTM A216 GR WCB
19	1	Screw, Hex HD.Cap	STEEL	STEEL	STEEL	STEEL
20	1	Nut, Hex	STEEL	STEEL	STEEL	STEEL

- Buttweld, socketweld and threaded bodies are ASTM A351-CF3M
 - Buttweld, socketweld and threaded bodies are ASTM A494-CW2M


• Refer to the "Ordering Information" section of this catalog for

Free to the ordering information section of this calls specific seat/seal combinations
 K - Extended covers have three stem seals
 * - Recommended spare parts. Available as seat/seal kit
 A - Zinc phosphate coated

Note: See pages 49-50 for optional materials.

Dimensions, Weights, and Parts Lists 3", 4" and 6" Valves

Note

- 1. Body boss can be drilled, tapped, and plugged.
- 2. End machining meets ASME B16.5 for flanged ends.
- Top two flanged bolt holes on 3" and 4" 150 lb class valves are drilled and tapped ⁵/₈" – 11 UNC class 2B. Top two flanged bolt holes on 4" 300# Class valves are drilled and tapped ³/₄"-10 UNC class 2B.
- 4. The design meets ASME B16.34, MSS-SP 72 and ASME B16.10.
- 5. Valve is shown in the open position. Clockwise rotation of stem closes the valve.

Ø "D"

Ø "H"

Socket Weld and Threaded Body

SEE NOTE I

"E

Flanged Body Dimensions in inches and (mm)

VALVE	PRESSURE	"A"	"B"	"C"	"D"	"E"	"F"	"G"	"H"		"K"	ΨĽ.	"M"	"N"	"P"	"R"	"T"	"U"	WEI	GHT
SIZE	CLASS	DIM	DIM	DIM	DIM	DIM	DIM	DIM	DIM	DIM	N	DIM	DIM	DIM	DIM	DIM	DIM	DIM	LBS	KG
	150#	8.00 (203.2)					7.50 (190.5)	6.00 (152.4)	4.00 (101.6)	0.75 (19.0)	4	0.75 (19.0)		0.06	7.12 (180.8)				41.0	18.4
3"	300#	11.12 (282.4)	8.00 (203.2)		2.25 (57.2)	2.88 (73.2)	8.25	6.62	4.50	0.88		1.12 (28.4)	5.00 (127.0)	(1.5)	9.88 (251.0)	3.50 (88.9)	3/8-16 UNC	0.75 (19.0)	64.0	28.8
	600#	14.00 (355.6)		15.12			(209.6)	(168.1)	(114.3)	(22.4)		1.32 (33.5)]	0.25 (6.4)	12.12 (307.8)				77.0	34.6
	150#	9.00 (228.6		(384.0)			9.00 (228.6)	7.50 (190.5)	4.88 (124.0)	0.75 (19.0)	8	0.94 (23.9)		0.06	8.00 (203.2)	4.00		0.88 (22.4)	54.0	24.3
4"	300#	12.00 (304.8)	9.00 (228.6)		3.00 (76.2)	3.38 (85.8)	10.00 (254.0)	7.88 (200.2)	5.62	0.88 (22.4)	°	1.25 (31.8)	6.19 (157.2)	(1.5)	10.69 (271.5)	(101.6)		1.00	102.0	45.9
	600#	17.00 (431.8)					10.75 (273.0)	8.50 (215.9)	(142.7)	1.00 (25.4)		1.56 (39.6)]	0.25 (6.4)	14.88 (378.0)	4.50 (114.3)	7/16-14 UNC	(25.4)	145.0	65.7
61	150# (15.50 (393.7)	12.51	21.37	4.00	4.56	11.00 (279.4	9.50 (241.3)	6.50 (165.1)	0.88		1.00 (25.4)	8.50	0.06	14.38	4.00		0.75	198.4	89.3
6"	300#	15.88 (403.4)	(317.8)	(542.8)	(101.6)	(115.8)	12.50 (317.5)	10.62 (269.7)	7.12 (180.8)	(22.4)	12	1.44 (36.6)	(215.9)	(1.5)	(365.2)	(101.6)		(19.0)	235.0	105.8

Socket Weld and Threaded Body

VALVE	PRESSURE	"A"	"B"	"C"	"D"	"E"	"F"	"G"	"H"	WEI	GHT
SIZE	CLASS	DIM	DIM	DIM	DIM	DIM	DIM	DIM	DIM	LBS	KG
3"	150-300#	11.12 (282.4)	8.00 (203.2)	15.12 (384.0)	2.25 (57.2)	2.88 (73.2)	7.50 (190.5)	0.63 (16.0)	3.54 (89.9)	42.0	18.9

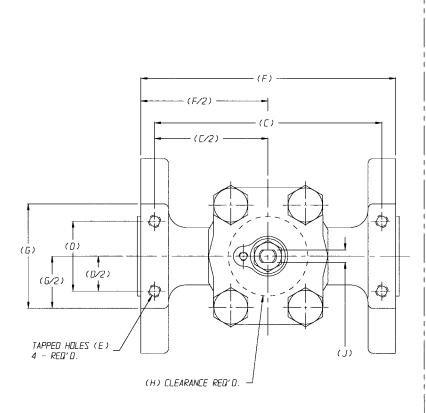
Buttweld Body

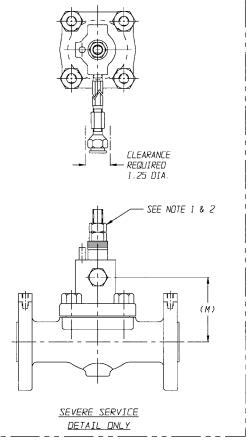
VALVE	PRESSURE	"A"	"B"	"C"	"D"	"E"	"F"	WEI	GHT
SIZE	CLASS	DIM	DIM	DIM	DIM	DIM	DIM	LBS	KG
3"	150-300#	11.12 (282.4)	8.00		2.25	2.88	7.50	39.0	17.5
5	600#	14.00 (355.6)	(203.2)	15.12	(57.2)	(73.2)	(190.5)	47.0	21.2
4"	150-300#	12.00 (304.8)	9.00	(384.0)	3.00	3.38	8.38 (212.8)	61.0	27.4
4	600#	17.00 (431.8)	(228.6)		(76.2)	(85.8)	8.63 (219.2)	80.0	36.0
6"	150-300#	15.88 (403.4)	12.51 (317.8)	21.37 (542.8)	4.00 (101.6)	4.56 (115.8)	12.10 (307.3)	164.6	74.1

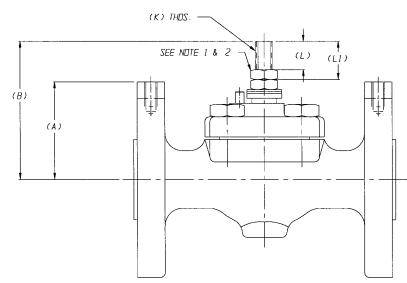
Bill of Materials - Base Valve with Standard Cover

ITEM	QTY	DESCRIPTION	CARBON STEEL	STAINLESS STEEL	ALLOY 20	HASTELLOY
1	1	Body	CS ASTM A216 GR WCB 🛕	SS ASTM A351 GR CF8M	ALLOY 20 ASTM A351 GR CN7M	HAST ASTM A494 CW6M 🛷
2	1	Ball	SS ASTM A351 CF8M	SS ASTM A351 CF8M	ALLOY 20 ASTM A351 CN7M	HAST ASTM B574 10276
* 3	2	Seat ቀ	PTFE	PTFE	PTFE	PTFE
4	1	Cover	CS ASTM A216 GR WCB 🛕	SS ASTM A351 GR CF8M	ALLOY 20 ASTM A351 GR CN7M	HAST ASTM A494 CW6M
5	Ω 8	Screw, Hex HD.Cap	CS ASTM A193 GR B7	SS ASTM A193 GR B8	SS ASTM A193 GR B8	SS ASTM A193 GR B8
6	1	Nut, Hex Jam	CS	SS	SS	SS
* 7	¥ 2	Seal, Stem ቀ	PTFE	PTFE	PTFE	PTFE
* 8	1	Gasket ቀ	PTFE	PTFE	PTFE	PTFE
9	1	Pin, Grooved	SS	SS	SS	SS
10	1	Stem	SS ASTM A276 TYPE 316	SS ASTM A276 TYPE 316	ALLOY 20 ASTM B473 N08020	HAST ASTM B574 10276
11	1	Rotational Stop	CS ASTM A216 GR WCB	CS ASTM A216 GR WCB	CS ASTM A216 GR WCB	CS ASTM A216 GR WCB
12	1	Ring, Gland	SS ASTM A276 TYPE 316	SS ASTM A276 TYPE 316	SS ASTM A276 TYPE 316	SS ASTM A276 TYPE 316
13	1	Spring	SS ASTM A313 TYPE 316	SS ASTM A313 TYPE 316	INCONEL ASTM B637, X750	INCONEL ASTM B637, X750
14	2	Washer, Belleville	CS ASTM A684	17-7PH	17-7PH	17-7PH
* 15	2	Ring, Seat	SS ASTM A240 TYPE 316	SS ASTM A240 TYPE 316	ALLOY 20 ASTM B463 N08020	HAST ASTM B574 10276
16	1	Plate, Ident.	SS ASTM A240 TYPE 304	SS ASTM A240 TYPE 304	SS ASTM A240 TYPE 304	SS ASTM A240 TYPE 304
17	2	Screw, Drive	CS	CS	CS	CS
18	1	Handle	CS ASTM A-53	CS ASTM A-53	CS ASTM A-53	CS ASTM A-53
19	1	Screw, Hex HD.Cap	STEEL	SS	SS	SS
20	1	Screw, Soc.HD.Set	STEEL	STEEL	STEEL	STEEL
21	1	Circle, Cotter	STEEL	STEEL	STEEL	STEEL
22	1	Hub, Lever	CS ASTM A216 GR WCB 🛆	CS ASTM A216 GR WCB 🛆	CS ASTM A216 GR WCB 🛕	CS ASTM A216 GR WCB 🛕
23	1	Grip, Handle	PLASTIC	PLASTIC	PLASTIC	PLASTIC
24	2	Screw, Flat HD.MACH.	STEEL	STEEL	STEEL	STEEL
25	1	Plate, Locking	CS ASTM A108-1018	CS ASTM A108-1018	CS ASTM A108-1018	CS ASTM A108-1018

- Buttweld, socketweld and threaded bodies are ASTM A351-CF3M

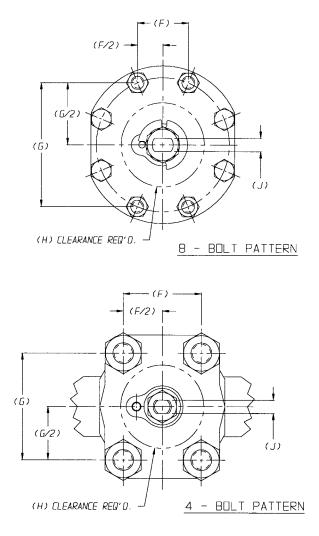

- Buttweld, socketweld and threaded bodies are ASTM A494-CW2M
 - Refer to the "Ordering Information" section of this catalog for specific seat/seal combinations

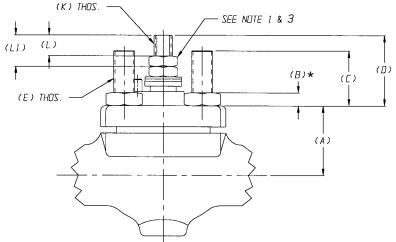

K - Extended covers have three stem seals

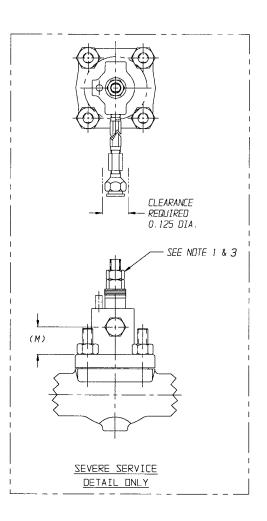

2^a and 4^a Class 150 flanged valves have four cap screws
 * - Recommended spare parts. Available as seat/seal kit
 A - Zinc phosphate coated

Actuator Mounting Dimensions Flange Pads

- 1. Double nuts on actuated valves .5"–2" sizes only.
- 2. Single nut is used with stem extension kits for all sizes.



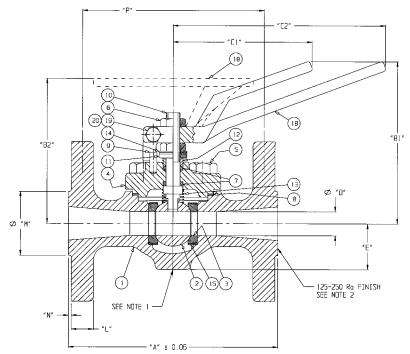

100 STANDARD 1 4.27 3.62 1/2" 300 STANDARD 5.43 5.2 100 STANDARD 5.44 5.43 100 STANDARD 5.47 5.34 100 STANDARD 5.34 6.00 2.01 3/4" 300 STANDARD 5.34 6.00 2.01 3/4" 300 STANDARD 5.34 6.00 2.01 3/4" 300 STANDARD 5.34 6.00 2.01 100 STANDARD 5.34 6.00 2.01 2.00 110 STANDARD 5.34 6.00 2.01 2.01 2.01 2.00	VALVE SIZE	PRESS. CLASS	COVER TYPE	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(L)	(К)	(L)	(L1)	(M)
1000 1000 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2.00</td><td></td><td></td><td>0.58</td><td>0.83</td><td>-</td></td<>											2.00			0.58	0.83	-
1/2" 300# STANDARD SEVER SERV. SEVER SEVER. SEVER SEVER SEVER SEVER SEVER. SEVER SEVER SEVER SEVER SEVER		150#		1.94		3.62			4.12		2.31					2 78
1/2 900# 5XR100400 240 3.47											2.00					2.70
Geom STANDARD SEVERE SERV. SAP (STANDARD SEVERE SERV.	1/2"	300#				4.88			5.38		2.31					-
600# EXTENDED 497 5.38 0.00 2.31 0.00 2.31 100# SIANDARD 2.12 4.94 0.25-20UK 2.00 2.31 0.05 0.03 2.78 3/4" 300# SIANDARD 3.34 5.88 2.62 2.31 0.05 0.03 2.78 0.58 0.83 0.33 0.65 0.00 2.78 0.58 0.83 0.33 0.65 0.00 2.78 0.36 0.33 0.65 0.00 2.78 0.36 0.33 0.65 0.00 2.78 0.36 0.33 0.65 0.00 2.78 0.36 0.33 0.65 0.00 2.78 0.36 0.33 0.66 0.00 2.78 0.36 0.33 0.36 0.33 0.30 2.36 0.30 2.32 0.36 0.30 2.32 0.36				2.06							2 00					2.78
Strain Star		600#				5.38			6.00		-			0.58	0.83	-
100# EXTENDED 1.2 4.07 4.00 4.30 5.34							2.00							0.65	0.90	2.78
3/4" 30 # SEVERE SERV. 5.34 (30 # STANDARD STANDARD 3.47 (37 A) STANDARD 3.47 (4.37 (37 A) STANDARD 3.47 (37 A) STANDARD 3.47 (4.37 (37 A) STANDARD 3.47 (4.37 (37 A) STANDARD 0.58 (4.37 (37 A) STANDARD 0.58 (4.37 (37 A) STANDARD 0.58 (4.37 (37 A) STANDARD 0.58 (4.37 (37 A) STANDARD 0.58 (4.37 (37 A) STANDARD 0.58 (4.37 (37 A) STANDARD 0.57 (4.37 (37 A) STANDARD 0.58 (4.37 (37 A) STANDARD 0.57 (4.37 (37 A) STANDARD 0.58 (4.37 (37 A) STANDARD 0.57 (4.37 (37 A) STANDARD 0.58 (4.37 (37 A) STANDARD 0.57 (4.37 (37 A) STANDARD 0.57 (4.37 (37 A)) STANDARD 0.57 (4.37 (4.37 (4.37 (4.37))) STANDARD 0.5		150#		2 12		4 00		X 0.36 DP.	4 50					0.58	0.83	-
3/4* 300# Extenser 4 97 5.31 3/4* 5.34 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2.31</td><td></td><td></td><td>0.65</td><td>0.90</td><td>2.78</td></t<>											2.31			0.65	0.90	2.78
100 SEVERS SERV. SIANDARD BOOM EXTENDED SEVERS SERV. 3 44 2.50 3 47 3 457 5 40 3 47 5 524 2.50 3 47 5 407 5 40 5 407 5 40 5 407 5 407 5 40 5 407 5 40 5 407 5 40 5 407 5 40 5 40 5 40 5 40 5 40 5 40 5 40 5 40	2/4"	200#				F 24			F 00	2 62	2.00		0 439 14110	0.58	0.83	-
StanDarde Sevene Serv. 3.47 (5.34) (5.35) (5.35) (5.35) (5.36) (5.37) (5.3	5/4	300#				5.51			5.00	2.02	2.31		0.438-14010	0.65	0.90	2.78
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			STANDARD	2.50	3.47		1				2.00			0.58	0.83	_
1:0 STANDARD SEVERS SERV 0:0 3.47 5.34 1.1 5.34 4.19 5.34 4.88 5.34 2.00 2.31 0.305 2.31 0.50 0.65 0.90 2.78 0.65 0.88 0.83 - 0.65 0.90 2.78 0.65 0.88 0.83 - 0.65 0.90 2.78 0.65 0.90 2.78 0.65 0.88 0.83 - 0.65 0.90 2.78 0.65 0.88 0.83 - 0.65 0.90 2.78 0.65 0.65 0.90 2.78 0.66 0.66 0.91 2.78 0.67 <t< td=""><td></td><td>600#</td><td></td><td></td><td></td><td>6.31</td><td></td><td></td><td>7.00</td><td></td><td>2.31</td><td>0.000</td><td></td><td></td><td></td><td>2.79</td></t<>		600#				6.31			7.00		2.31	0.000				2.79
15:0# EXTINUED SEVERE SERV. SEVERE SERV. 600# 4.99 STANDARD SEVERE SERV. 5.34 4.99 3.47 4.19 3.47 4.99 3.47 4.19 3.47 4.88 2.31 000# EXTENDED SEVERE SERV. 500E# 3.347 3.47 3.47 3.47 3.47 3.47 100# EXTENDED SEVERE SERV. 500E# 3.347 3.34 0.312 2.00 0.58 0.65 0.90 2.78 11/2" 150# EXTENDED SEVERE SERV. 500 5.85 6.56 0.312-18UNC A110 7.38 0.312-18UNC A110 0.66 0.90 2.78 11/2" STANDARD 5EVERE SERV. 5EVERE SERV. 5EVE											2.00					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		150#		1		4.19			4.88					0.58	0.83	-
1* 300# EXTENDED SEVER 4.07 5.347 5.69 3.47 5.69 3.47 5.69 3.47 5.69 3.47 5.69 3.47 5.74 6.38 2.31 2.00 2.31 0.65 0.90 2.78 1 102* 5150# 517ADARD 6.35 5.62 5.62 5.62 5.63 5.62 5.63 5.62 5.63 5.62 5.63 5.62 5.63 5.62 5.62 5.63 5.62 5.63 5.62 5.63 5.63 5.63 5.62 5.63 5.63 5.63 5.64 5.63 5.64 5.63 5.64 5.63 5.64 5.63 5.64 5.63 5.64 5.64 5.64 5.64 5.64 5.64 5.64 5.64 5.64 5.64 5.65 5.64 5.65 5.64 5.65 5.64 5.65 5.64 5.65 5.64 5.64 5.64 5.65 5.64 5.65 5.65 5.65 5.65 5.65 5.65 5.65 5.65 5.65														0.65	0.90	2.78
Situandare Book 5.34 (317) (317) (317) (317) (317) (317) (300) Sitandare (317) (300) (317) (300) 5.34 (317) (317) (300) 5.34 (317) (317) (300) 5.34 (317) (317) (300) 5.34 (317) (317) (300) 5.35 (317) (317) (317) (300) 6.35 (317) (3	1"	300#		2.56		5.69			6.38					0.58	0.83	-
600# EXTENDED 4.97 7.28 8.00 2.31 0.50 0.65 0.90 2.78 110# 5740DA8D 4.10 5.85 5.62 6.38 3.19 3.19 3.19 3.00 6.38 3.19 3.00 6.38 3.19 3.00 6.38 3.19 3.00 6.38 3.19 3.00 6.06 0.91 0.66 0.91 0.66 0.91 0.86 0.93 3.23 0.66 0.91 0.78 1.09 3.32 0.66 0.91 0.78 1.09 3.32 0.66 0.91 0.78 1.09 3.32 0.66 0.91 0.97 1.34 0.97 1.34 0.97 1.34 0.97 1.34 0.97 1.34 0.97 1.34 0.97 1.34 0.97 1.34 0.97 1.34				1										0.65	0.90	2.78
SEVERE SERV 5.34 1.75 STADARD 0.05 5.85 0.05 2.78 1102* 300# SEVERE SERV 6.35 5.85 6.55 6.35 6.38 3.19 2.00 3.19 2.00 3.19 2.00 3.19 2.00 3.19 2.00 3.19 2.00 3.19 2.00 3.19 2.00 3.19 2.00 3.19 2.00 3.19 2.00 3.19 2.00 3.19 2.00 3.19 2.00 3.19 2.00 3.19 2.00 3.11 0.60 0.91 0.78 1.09 3.32 0.60 0.91 0.78 1.09 3.32 0.60 0.91 0.78 1.09 3.22 0.08 3.12 3.81 3.19 3.81		600#		-		7 25			8 00		2.00			0.58	0.83	-
150* SIANDARD SEVERE SERV. 4.10 (000%				7.25	1 75		0.00		2.31			0.65	0.90	2.78
150# EXTENDED 3.00 5.83 5.62 30# SEVERS SERV. 6.35							1.75				2.00			0.60	0.91	-
11/2" 300# STANDARD EXTENDED SEVERE SERV. STANDARD 4.10 (6.35) 0.312.18/UK (6.35) 7.38 (6.35) 7.38 (6.35) 7.38 (6.35) 0.50-13/UK (6.00) 0.60 0.91 600# EXTENDED SEVERE SERV. STANDARD 3.31 6.35 (6.35) 8.00 9.00 3.19 3.19 0.50-13/UK (6.00) 0.60 0.91 2" STANDARD 300# EXTENDED SEVERE SERV. SEVERE SERV. SEVERE SERV. SEVERE SERV. SEVERE SERV. SEVERE SERV. SEVERE SERV. 330# 4.87 (7.19) 2.25 6.88 8.38 3.32 0.50-13/UK (3.18) 0.60 0.91 300# EXTENDED SEVERE SERV. SEVERE SERV. SEVERE SERV. SEVER SERV. SEV		150#		3.00		5.62			6.38		3.19			0.78		3 32
11/2 300# EXTENDE 5.85 5.56 7.38 7.38 3.19 0.50-130.00 0.78 1.09 3.32 600# EXTENDED 6.35 6.35 6.35 3.00 7.88 3.19 0.50-130.00 0.78 1.09 3.32 2* 5TANDARD 6.35 6.35 6.35 6.88 3.19 0.50-130.00 0.78 1.09 3.32 300# EXTENDED 5.12 6.87 7.50 2.25 8.38 2.50 3.38 0.97 1.34 0.03 3.81 300# EXTENDED 5.87 7.79 2.25 8.38 2.50 3.38 0.97 1.34 0.093 1.30 3.81 300# EXTENDED 5.87 7.19 7.19 7.19 7.19 3.38 0.97 1.34 0.093 1.30 3.81 300# EXTENDED 4.00 8.14 7.12 7.19 7.88 3.00 4.50 0.93 1.30 3.81 0.97 1.34 0.93 0.93 1.30 3.81 0.93								0.312-18UNC			2.00					0.02
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 1/2"	300#				6.56		x .47/.56	7.38		3.19		0.50-13UNC			-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				3.31				DEEF			2.00					3.32
Severe serv. 6.35 0.78 1.09 3.32 150# ExtENDED 3.12 6.87 7.19 3.38		600#				8.00			9.00					0.60	0.91	-
150# EXTENDED SEVERE SERV. 3.12 6.87 7.19 6.19 7.19 2" 300# EXTENDED SEVERE SERV. 6.87 7.19 2.25 6.88 3.38 0.368 0.375 0.93 1.30 3.81 600# EXTENDED SEVERE SERV. 7.19 4.87 0.98 2.25 3.38 0.368 0.375 0.93 1.30 3.81 500# EXTENDED SEVERE SERV. 7.19 8.83 7.19 3.38 0.368 0.97 1.34 150# EXTENDED SEVERE SERV. 0.814 7.12 8.74 9.88 3.50 8.35 9.375 11.00 4.62 3.00 0.622 1.00-8UNC 0.90 300# EXTENDED SEVERE SERV. 5.89 8.14 9.88 3.50 8.35 13.50 4.50 3.00 4.50 3.00 4.50 3.00 4.50 3.00 4.50 3.00 4.50 3.00 4.50 3.00 4.50 3.00 4.50 3.00 4.50 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3.12</td><td></td><td></td><td></td><td>0.78</td><td>1.09</td><td>3.32</td></t<>										3.12				0.78	1.09	3.32
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		150#		3.12		6.19			6.88			ł		0.97	1.34	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				1										0.93	1.30	3.81
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	D "	300#				7 50	2.25		9 2 9		2.50		0.625.11110	0.97	1.34	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		500#		~ 75		7.50	2.25		0.50		3.38	0.368	0.025-110100	0.93	1.30	3.81
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				3.75			1			1	2.50			0.97	1.34	_
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		600#				9.88			11.00		3.38			0.93	1 30	3 81
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											3.00			0.55		5.01
3" 300# STANDARD EXTENDED SEVERE SERV. 000# 4.50 EXTENDED STANDARD EXTENDED SEVERE SERV. 300# 5.89 8.14 EXTENDED SEVERE SERV. 300# 9.88 8.14 EXTENDED SEVERE SERV. 300# 3.50 EXTENDED SEVERE SERV. 300# 0.438 8.14 EXTENDED SEVERE SERV. 300# 0.438 8.14 10.41 0.438 8.88 8.88 3.50 5.31 0.747 0.743 1.00-8UNC 0.90 1.09 1.09 5.03 4" 300# EXTENDED SEVERE SERV. 5.02 7.05 9.43 10.41 4.00 10.41 0.438-14UNC x 1.00 DP. 8.88 11.88 5.00 5.31 5.31 0.747 0.743 1.05-7UNC 1.10 - 1.08 1.00 600# STANDARD EXTENDED SEVERE SERV. 300# 5.42 10.41 10.48 10.41 4.00 10.41 0.438-14UNC x 1.00 DP. 5.31 0.747 0.743 1.25-7UNC 1.08 5.91 1.10 - 1.08 5.01 1.4.38 4.00 0.438-14UNC x 1.00 DP. 5.31 5.31 0.747 0.743 1.25-7UNC 1.08 5.91 1.00 5.02 1.4.38 4.00 0.438-14UNC x 0.75 DP. 5.25 6.00		150#		4.00		7.12			7.88		4.50					-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$											3.00					5.03
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3"	300#				9.88	3.50		11.00	4.62			1.00-8UNC		0.90	-
$ \begin{array}{ c c c c c c c } \hline 600 \# & \underline{EXTENDED} \\ \hline SEVERE SERV. \\ \hline SEVERE SERV. \\ \hline \\ & 300 \# & \underline{EXTENDED} \\ & \underline{STANDARD} \\ & \underline{SEVERE SERV.} \\ & \underline{10.41} \\ \hline \\ & \underline{7.65} \\ & \underline{9.43} \\ 10.59 \\ \hline \\ & \underline{7.65} \\ & \underline{9.43} \\ 10.59 \\ \hline \\ & \underline{7.65} \\ & \underline{9.43} \\ 10.59 \\ \hline \\ & \underline{7.65} \\ & \underline{9.43} \\ 10.59 \\ \hline \\ & \underline{7.65} \\ & \underline{9.43} \\ 10.59 \\ \hline \\ & \underline{7.65} \\ & \underline{9.43} \\ 10.59 \\ \hline \\ & \underline{7.65} \\ & \underline{9.43} \\ 10.59 \\ \hline \\ & \underline{7.65} \\ & \underline{9.43} \\ 10.59 \\ \hline \\ & \underline{7.65} \\ & \underline{9.43} \\ 10.59 \\ \hline \\ & \underline{7.65} \\ & \underline{9.43} \\ 10.59 \\ \hline \\ & \underline{7.65} \\ & \underline{9.43} \\ 10.59 \\ \hline \\ & \underline{7.65} \\ & \underline{9.43} \\ 10.41 \\ \hline \\ & \underline{7.65} \\ & \underline{9.43} \\ 10.59 \\ \hline \\ & \underline{7.65} \\ & \underline{9.43} \\ 11.88 \\ & \underline{4.00} \\ & \underline{8.88 \\ & \underline{5.31} \\ \hline \\ & \underline{5.31} \\ \hline \\ & \underline{5.31} \\ \hline \\ & 5.74 \\ & \underline{7.75 \\ & \underline{5.25 \\ & \underline{6.00 \\ & \underline{1.247 \\ & \underline{7.45 \\ & \underline{7.15 \\ &$				4.50			-								1.09	5.03
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		600#				12.12			13.50						0.90	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			SEVERE SERV.	1	9.22						4.50				1.09	5.03
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		150#		1 20		8 00			8 22		3.50				1.10	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		150#		4.00		0.00	4.00	x 0.88 DP.	0.00		5.31				1.08	5.97
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							4.00				3.50	0 747			1.10	_
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4"	300#				10.59		0 428 141100	11.88	5.00	5.31		1.25-7UNC			5.01
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				5.62							3.50					5.91
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		600#]		14.88	4.50		16.50		5.31					-
150# EXTENDED SEVERE SERV. 6.50 13.45 6" SEVERE SERV. 13.45 300# STANDARD EXTENDED SEVERE SERV. 10.20 - 13.45 - 13.45 - 13.45 - 13.45 - 13.45 - 13.45 - -								<u> </u>								5.91
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		150#		6.50					15.32						1.69	-
6" 300# STANDARD EXTENDED SEVERE SERV. 10.20 13.45 X 0.75 DP. 15.70 5.25 6.00 1.247 1.243 2.00-12UNC 1.69 - - - - - - - - - -						14.38								1.30	6.68	
SEVERE SERV. 7.12 13.45 1.243 1.243 -<	6"	300#						x 0.75 DP.	15 70	5 25	6.00		2 00-1211NC		1.69	-
		500#		7 1 7	13.45					2.20	0.00	1.243	2.00-12014		1.30	6.68
				1.12											-	
		-	-		-	-	-	-	-						-	-

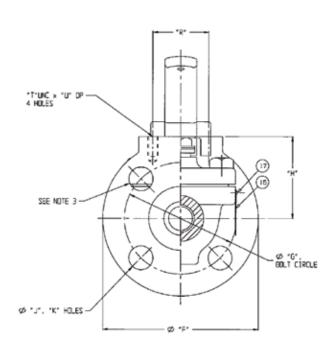


Actuator Mounting Dimensions

Bonnet Studs and Double Nuts

- 1. Double nuts on actuated valves .5"–2" sizes only.
- * 2. Indicates dimensions for finished hex nuts.
 - 3. Single nut is used with stem extension kits for all sizes.


VALVE SIZE	PRESS. CLASS	COVER TYPE	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(L)	(К)	(L)	(L1)	(M)
	150#	STANDARD EXTENDED				1.91 3.41				2.00			0.58	0.83	-
	(4 BOLT)	SEVERE SERV.				3.78				2.31			0.65	0.90	1.22
	300#	STANDARD				1.91				2.00	1		0.58	0.83	_
1/2"	(4 BOLT)	EXTENDED SEVERE SERV.				3.41 3.78				2.31			0.65	0.90	1.22
	c00#	STANDARD				1.91				2.00			0.58	0.83	-
	600# (4 BOLT)	EXTENDED SEVERE SERV.				3.41 3.78				2.31			0.58	0.85	1.22
		STANDARD				1.91				2.00					
	150# (4 BOLT)	EXTENDED				3.41				2.31	1		0.58	0.83	-
		SEVERE SERV. STANDARD				3.78 1.91				2.00			0.65	0.90	1.22
3/4"	300# (4 BOLT)	EXTENDED	1.56		1.31	3.41		1.875	2.562	2.31		0.438-14UNC	0.58	0.83	-
	(SEVERE SERV. STANDARD				3.78 1.91				2.00			0.65	0.90	1.22
	600# (4 BOLT)	EXTENDED				3.41							0.58	0.83	-
		SEVERE SERV.		0.448		3.78	0.50-13UNC			2.31	0.309		0.65	0.90	1.22
	150#	STANDARD EXTENDED		0.427		1.91 3.41				2.00	0.305		0.58	0.83	-
	(4 BOLT)	SEVERE SERV.				3.78				2.31			0.65	0.90	1.22
1"	300#	STANDARD EXTENDED				1.91 3.41				2.00			0.58	0.83	-
	(4 BOLT)	SEVERE SERV.				3.78				2.31			0.65	0.90	1.22
	600#	STANDARD				1.91				2.00			0.58	0.83	-
	(4 BOLT)	EXTENDED SEVERE SERV.				3.41 3.78				2.31			0.65	0.90	1.22
	150#	STANDARD				2.16				2.00			0.60	0.91	-
	(4 BOLT)	EXTENDED SEVERE SERV.				3.91 4.41				3.19			0.78	1.09	1.38
	300#	STANDARD				2.16				2.00			0.60	0.91	
1 1/2"	(4 BOLT)	EXTENDED SEVERE SERV.	1.94		1.44	3.91 4.41		2.625	2.875	3.19		0.50-13UNC	0.78	1.09	1.38
	"	STANDARD				2.16				2.00					
	600# (4 BOLT)	EXTENDED				3.91				3.19			0.60	0.91	-
		SEVERE SERV. STANDARD				4.41 2.56				2.50			0.78	1.09	1.38
	150# (4 BOLT)	EXTENDED				4.56				3.38			0.97	1.34	-
	· · · ·	SEVERE SERV. STANDARD				4.88 2.56				2.50	-		0.93	1.30	1.50
2"	300# (4 BOLT)	EXTENDED	2.31		1.62	4.56		2.875	3.625	3.38	0372 0.368	0.625-11UNC	0.97	1.34	-
		SEVERE SERV.				4.88					0.500		0.93	1.30	1.50
	600# (4 BOLT)	STANDARD EXTENDED				2.56 4.56				2.50			0.97	1.34	-
		SEVERE SERV.		-		4.88				3.38			0.93	1.30	1.50
	150#FLGO	STANDARD EXTENDED	2.84		2.16	3.05 5.30		4.125	4.75	3.00				0.90	-
	(4 BOLT)	SEVERE SERV.		0.559		6.39	0.625-11UNC			4.50				1.09	2.19
3"	150/300#	STANDARD EXTENDED		0.535		2.61 4.86	0.025 110110			3.00	0.622	1.00-8UNC		0.90	-
	(8 BOLT)	SEVERE SERV.	3.28		1.72	5.94		2.440	5.890	4.50	0.618	1.00-0010		1.09	1.75
	600#	STANDARD	5.20		1.72	2.61		2.440	5.690	3.00				0.90	-
	(8 BOLT)	EXTENDED SEVERE SERV.				4.86 5.94				4.50				1.09	1.75
	150#FLGO	STANDARD		1		3.77				3.50				1.10	-
	(4 BOLT)	EXTENDED SEVERE SERV.	3.35		2.34	6.15 7.08		4.75	5.50	5.31				1.08	2.00
	150/300#	STANDARD			<u> </u>	3.14				3.50	0.747			1.10	-
4"	(8 BOLT)	EXTENDED SEVERE SERV.			1.72	5.52 6.44		2.774	6.698	5.31	0.747	1.25-7UNC		1.08	2.00
	600 "	STANDARD	3.97		<u> </u>	6.44 3.14				3.50					2.00
	600# (8 BOLT)			0.565 0.617	1.91	5.52	075-10UNC	2.822	6.814	5.31				1.10	-
	. – -	SEVERE SERV. STANDARD				6.44 5.45								1.08	2.00
	150# (8 BOLT)	EXTENDED				8.65								1.69	-
	. ,	SEVERE SERV. STANDARD				5.45								1.30	2.39
6"	300# (8 BOLT)	EXTENDED	4.75	1.012 0.956	3.00	8.65	1.00-8UNC	3.895	9.404	6.00	1.247 1.243	2.00-12UNC		1.69	-
		SEVERE SERV.												1.30	2.39
	-	-				-								-	-
		-				-								-	-

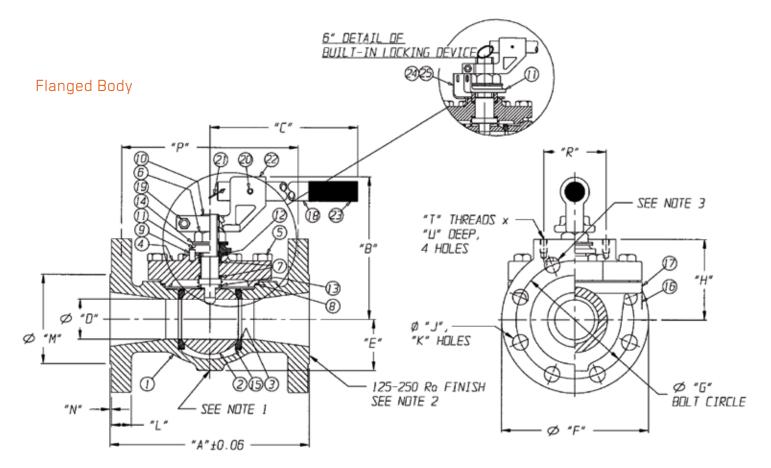


GV Series: Dimensions & Weights

1/2"-2" Valves

Flanged Body

- 1. Body boss can be drilled, tapped, and plugged.
- 2. End machining meets ASME B16.5 for flanged ends.
- 3. $\frac{1}{2}$ " and $\frac{3}{4}$ " 150 lb class flanged bolt holes are tapped $\frac{1}{2}$ " – 13 UNC class 2B. Top two holes are blind drilled and tapped.
- 4. The design meets ASME B16.34, MSS-SP 72 and ASME B16.10.
- 5. Valve is shown in the open position. Clockwise rotation of stem closes the valve.

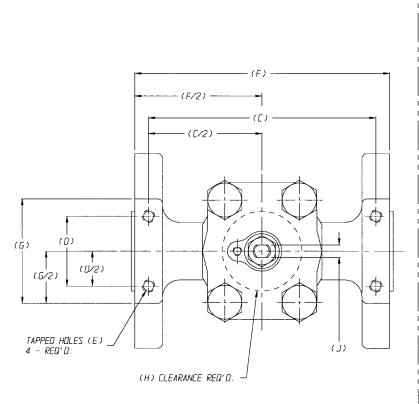

PORT	VALVE	PRESSURE	"A"	"B1"	"B2"	"C1"	"C2"	"D"	"E"	"F"	"G"	"H"	יינ"	"K"	ոլո	"M"	"N"	"P"	"R"	"T"	"U"	WEI	IGHT
PORI	SIZE	CLASS	DIM	DIM	DIM	DIM	DIM	DIM	DIM	DIM	DIM	DIM	DIM	ĸ	DIM	DIM	DIM	DIM	DIM	DIM	DIM	LBS	KG
		150#	4.25 (113.0)							3.50 (88.9)	2.38 (60.4)	1.94 (49.3)	-		0.38 (9.6)		0.06	3.62 (91.9)				6.9	3.1
Full Port	1/2"	300#	6.00 (152.4)					0.62 (15.7)		3.75	2.62	2.06	0.63		0.50 (12.7)	1.38 (35.0)	(1.5)	5.38 (136.7)				8.1	3.7
		600#	6.50 (165.1)							(95.2)	(66.5)	(52.3)	(16.0)		0.61 (15.5)		0.25 (6.4)	5.38 (136.6)	2.00	1/4-20	0.38	9.0	4.1
		150#	4.62 (117.3)							3.88 (98.6)	2.75 (69.8)	2.12 (53.8)	-		0.41 (10.4)		0.06	4.00 (101.6)	(50.8)	UNC	(9.6)	8.0	3.6
Full Port	3/4"	300#	7.00 (177.8)	5.10 (129.5)	4.62 (117.3)	4.35 (110.5)	-		1.44 (36.6)	4.62	3.25	2.50	0.75		0.56 (14.2)	1.69 (42.9)	(1.5)	6.31 (160.3)				8.3	3.8
		600#	7.50 (190.5)					0.75		(117.3)	(82.6)	(63.5)	(19.0)		0.67 (17.0)		0.25 (6.4)	6.31 (160.3)				11.5	5.2
		150#	5.00 (127.0)					(19.0)		4.25 (108.0)	3.12 (79.2)		0.63 (16.0)	4	0.41 (10.4)		0.06	4.19 (106.4)				9.0	4.1
Regular Port	1"	300#	8.00 (203.2)							4.88	3.50	2.56 (65.0)	0.75		0.69 (17.5)	2.00 (50.8)	(1.5)	7.19 (182.6)				12.5	5.7
		600#	8.50 (215.9)							(124.0)	(88.9)		(19.0)		0.74 (18.8)		0.25 (6.4)	7.25 (184.2)	1.75			13.0	5.8
		150#	6.50 (165.1)							5.00 (127.0)	3.88 (98.6)	3.00 (76.2)	0.63 (16.0)		0.56 (14.2)		0.06	5.62 (142.7)	(44.4)			14.5	6.5
Regular Port	1-1/2"	300#	9.00 (228.6)	5.65 (143.5)	5.16 (131.1)	5.14 (130.6)	-	1.12 (28.4)	1.72 (43.7)	6.12	4.50	3.31	0.88		0.81 (20.6)	2.88 (73.2)	(1.5)	8.06 (204.7)		5/16-18 UNC	0.62 (15.7)	22.0	9.9
		600#	9.50 (241.3)							(155.4)	(114.3)	(84.1)	(22.4)		0.93 (23.6)		0.25 (6.4)	8.00 (203.2)				23.0	10.4
		150#	8.00 (203.2)							6.00 (152.4)	4.75 (120.6)	3.12 (79.2)			0.62 (15.7)		0.06	7.19 (182.6)				24.4	11.1
Regular Port	2"	300#	10 (266.7)	6.60 (167.6)	5.54 (140.7)	-	8.65 (219.7)	1.50 (38.1)	2.06 (52.3)	6.50	5.00	3.75	0.75 (19.0)	8	0.88 (22.4)	3.62 (91.9)	(1.5)	9.5 (241.3)	2.25 (57.2)			31.8	14.4
		600#	11.50 (292.1)							(165.1)	(127.0)	(95.2)		ő	1.05 (26.7)		0.25 (6.4)	9.88 (251.0)				34.0	15.3

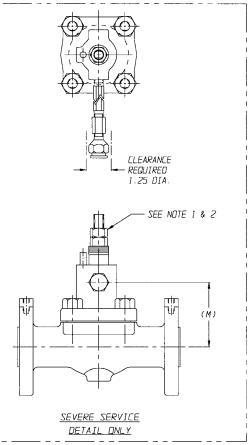
Flanged Body Dimensions in inches and (mm)

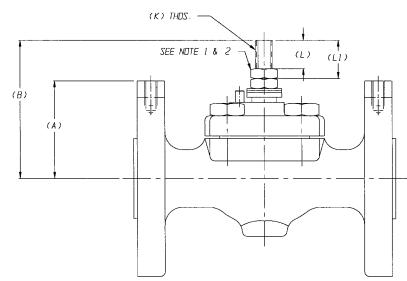
GV Series: Dimensions & Weights

3", 4" and 6" Valves

- 1. Body boss can be drilled, tapped, and plugged.
- 2. End machining meets ASME B16.5 for flanged ends.
- Top two flanged bolt holes on 3" and 4" 150 lb class valves are drilled and tapped ⁵/₈" – 11 UNC class 2B. Top two flanged bolt holes on 4" 300# Class valves are drilled and tapped ³/₄"-10 UNC class 2B.
- 4. The design meets ASME B16.34, MSS-SP 72 and ASME B16.10.
- 5. Valve is shown in the open position. Clockwise rotation of stem closes the valve.

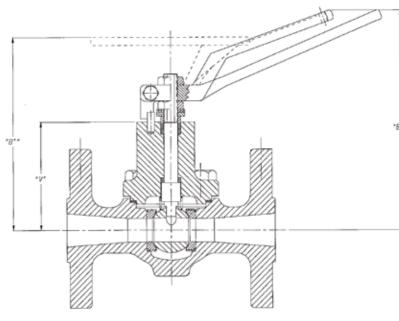



Flanged Body Dimensions in inches and (mm)

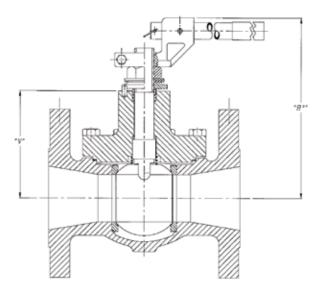

PORT	VALVE	PRESSURE	"A"	"B"	"C"	"D"	"E"	"F"	"G"	"H"	"J"	"K"	"L"	"M"	"N"	"P"	"R"	"T"	"U"	WEI	GHT
PUNI	SIZE	CLASS	DIM	DIM	DIM	DIM	DIM	DIM	DIM	DIM	DIM	ĸ	DIM	DIM	DIM	DIM	DIM	DIM	DIM	LBS	KG
		150#	9.50 (241.3)					7.50 (190.5)	6.00 (152.4)	4.00 (101.6)	0.75 (19.0)	4	0.75 (19.0)		0.06	8.62 (218.9)				44.3	20.1
Regular Port	3"	300#	12.5 (317.5)	8.00 (203.2)		2.25 (57.2)	2.88 (73.2)	8.25	6.62	4.50	0.88		1.12 (28.4)	5.00 (127.0)	(1.5)	11.25 (285.8)	3.50 (88.9)	3/8-16 UNC	0.75 (19.0)	65.9	29.9
		600#	14.00 (355.6)		15.12			(209.6)	(168.1)	(114.3)	(22.4)		1.32 (33.5)		0.25 (6.4)	12.12 (307.8)				77.0	34.6
		150#	11.50 (292.1)		(384.0)			9.00 (228.6)	7.50 (190.5)	4.88 (124.0)	0.75 (19.0)	8	0.94 (23.9)		0.06	10.5 (266.7)	4.00		0.88 (22.4)	61.6	27.9
Regular Port	4"	300#	14.00 (355.6)	9.00 (228.6)		3.00 (76.2)	3.38 (85.8)	10.00 (254.0)	7.88 (200.2)	5.62	0.88 (22.4)	0	1.25 (31.8)	6.19 (157.2)	(1.5)	12.69 (322.3)	(101.6)		1.00	107.8	48.8
		600#	17.00 (431.8)					10.75 8.50 (273.0) (215.9) (142.7)	1.00 (25.4)		1.56 (39.6)		0.25 (6.4)	14.88 (378.0)	4.50 (114.3)	7/16-14 UNC	(25.4)	145.0	65.7		
Regular Port	6"	150#	15.50 (393.7)	12.51	21.37	4.00	4.56	11.00 (279.4	9.50 (241.3)	6.50 (165.1)	0.88		1.00 (25.4)	8.50	0.06	14.38	4.00		0.75	198.4	89.3
Port	0	300#	15.88 (403.4)	(317.8)	(542.8)	(101.6)	(115.8)		(22.4) 12		1.44 (36.6)	(215.9)		(365.2)	(101.6)		(19.0)	235.0	105.8		

GV Series: Actuator Mounting Dimensions Flange Pads

- 1. Double nuts on actuated valves .5"–2" sizes only.
- 2. Single nut is used with stem extension kits for all sizes.



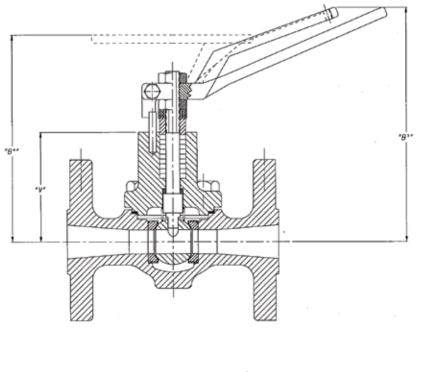
VALVE SIZE	PRESS. CLASS	COVER TYPE	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(L)	(K)	(L)	(L1)	(M)
		STANDARD		3.47						2.00			0.58	0.83	_
	150#	EXTENDED	1.94	4.97	3.62			4.12		2.31					
		SEVERE SERV. STANDARD	2.06	5.34 3.47			0.25-20UNC			2.00	-		0.65	0.90	2.78
1/2"	300#	EXTENDED		4.97	5.38			5.88		2.31			0.58	0.83	-
		SEVERE SERV.		5.34									0.65	0.90	2.78
	600#	STANDARD EXTENDED		3.47 4.97	5.38			6.00		2.00			0.58	0.83	-
		SEVERE SERV.		5.34		2.00				2.31			0.65	0.90	2.78
	150#	STANDARD	2 4 2	3.47	4.00	2.00	x 0.38 DP.	4.50		2.00			0.58	0.83	-
	150#	EXTENDED SEVERE SERV.	2.12	4.97 5.34	4.00			4.50		2.31			0.65	0.90	2.78
		STANDARD		3.47				1	2.00			0.58	0.83		
3/4"	300#	EXTENDED		4.97	6.31			6.88	2.62	2.31		0.438-14UNC			2 70
		SEVERE SERV. STANDARD	2.50	5.34 3.47						2.00			0.65	0.90	2.78
	600#	EXTENDED		4.97	6.31			7.00					0.58	0.83	-
		SEVERE SERV.		5.34						2.31	0.309		0.65	0.90	2.78
	150#	STANDARD EXTENDED	-	3.47 4.97	4.19			4.88		2.00	0.305		0.58	0.83	-
	150#	SEVERE SERV.		5.34	4.15			4.00		2.31			0.65	0.90	2.78
		STANDARD]	3.47						2.00		0.50-13UNC	0.58	0.83	-
1"	300#	EXTENDED SEVERE SERV.	2.56	4.97 5.34	7.19		0.312-18UNC	7.88		2.31			0.65	0.90	2.78
		STANDARD		3.47						2.00					
	600#	EXTENDED	1	4.97	7.25	- 1.75		8.00		2.31	1		0.58	0.83	-
		SEVERE SERV.		5.34						2.00			0.65	0.90	2.78
	150#	STANDARD EXTENDED	3.00	4.10 5.85	5.62			6.38 8.88 9.00					0.60	0.91	-
		SEVERE SERV.	1	6.35						3.19			0.78	1.09	3.32
1 1 / 2 !!	200#	STANDARD	3.31	4.10	0.00					2.00			0.60	0.91	-
1 1/2"		EXTENDED SEVERE SERV.		5.85 6.35	8.06		x .47/.56 DEEP			3.19		0.50-130NC	0.78	1.09	3.32
		STANDARD		4.10						2.00			0.60	0.91	
	600#	EXTENDED		5.85	8.00					3.19					
		SEVERE SERV. STANDARD		6.35 4.87			5		3.12	2.50			0.78	1.09	3.32
	150#	EXTENDED		6.87	7.19	_		7.88		3.38			0.97	1.34	-
		SEVERE SERV.		7.19							0.372 0.368		0.93	1.30	3.81
2"	300#	STANDARD EXTENDED		4.87 6.87	9.50	2.25				2.50			0.97	1.34	-
-	500%	SEVERE SERV.	3.75	7.19	5.50	2.25				3.38			0.93	1.30	3.81
		STANDARD	5.75	4.87						2.50			0.97	1.34	-
	600#	EXTENDED SEVERE SERV.		6.87 7.19	9.88			11.00		3.38			0.93	1.30	3.81
		STANDARD		5.89						3.00			0.55	0.90	5.01
	150#	EXTENDED	4.00	8.14	8.62			9.38		4.50					-
		SEVERE SERV. STANDARD		9.22 5.89						3.00				1.09	5.03
3"	300#	EXTENDED		8.14	11.25	3.50	0.375-16UNC x 0.75 DP.	12.38	4.62	4.50	0.622			0.90	-
		SEVERE SERV.	4.50	9.22			x 0.75 Di.				0.010			1.09	5.03
	600#	STANDARD EXTENDED		5.89 8.14	12.12			13.50		3.00				0.90	-
	0000	SEVERE SERV.	1	9.22				15.50		4.50				1.09	5.03
		STANDARD		7.11			0.438-14UNC			3.50				1.10	-
	150#	EXTENDED SEVERE SERV.	4.88	9.48 10.41	10.50		x 0.88 DP.	11.38		5.31				1.08	5.97
		STANDARD		7.05		4.00				3.50	0 7 4 7				5.57
4"	300#	EXTENDED		9.43	12.69			13.88	5.00	5.31	0.747	1.25-7UNC		1.10	-
		SEVERE SERV. STANDARD	5.62	10.41 7.05			0.438-14UNC x 1.00 DP.			3.50				1.08	5.91
	600#	EXTENDED	1	9.43	14.88	4.50		16.50		5.31				1.10	-
		SEVERE SERV.		10.41						5.51				1.08	5.91
	150#	STANDARD EXTENDED	6 50	10.20				15.32						1.69	-
	.50#	SEVERE SERV.	6.50	13.45	14.20	4.00	0.438-14UNC	2.2.						1.30	6.68
		STANDARD		10.20	14.38	4.00	x 0.75 DP.				1.247			1.69	_
6"	300#	EXTENDED SEVERE SERV.		13.45				15.70	5.25	6.00	1.247	2.00-12UNC		1.30	6.68
		-	7.12	-		<u> </u>									0.00
	-	-	1	-	-	-	-	-						-	-
		-		-										-	-


Dimensions

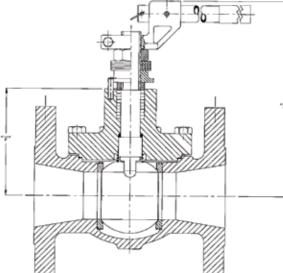
Extended Bonnet Valves

Dimensions in inches	
and (mm)	

í			110.41	115 /11			
	VALVE	"B ³ "	"B4"	"V"			
ļ	SIZE	DIM	DIM	DIM			
	1/2"						
ĺ	3/4"	6.65	6.12	3.41			
	1"	(168.9)	(155.4)	(86.6)			
	1"						
	1 1/2	7.44	6.91	4.14			
	1-1/2"	(189.0)	(175.5)	(105.2)			
	2"	8.80	7.54	4.63			
	Z	(223.5)	(191.5)	(117.6)			



VALVE SIZE	"B ³ " DIM	"V" DIM
3"	10.30 (261.6)	5.84 (148.3)
4"	11.46 (291.1)	6.79 (172.5)
6"	15.50 (393.7)	8.62 (218.9)


The basic dimensions shown above are for Cam-Tite[®] Ball Valves with extended bonnets as described on page 11. All components with the exception of the bonnet and stem are interchangeable on valves with standard bonnets. Parts identification and materials are also consistent with the standard bonnet and are described for the various configurations on pages 22-37. For complete dimensions and materials of construction for the extended bonnet, consult the factory.

Severe Service Bonnet Valves

VALVE	"B³"	"B4"	"V"
SIZE	DIM	DIM	DIM
1/2"			
3/4"	6.91	6.36	3.41
	(175.5)	(161.5)	(86.6)
1"	(175.5)	(101.5)	(00.0)
1-1/2"	8.03	7.19	4.14
	(204.0)	(182.6)	(105.2)
2"	9.05	7.80	4.63
	(229.9)	(198.1)	(117.6)

VALVE	"B ³ "	"V"
SIZE	DIM	DIM
3"	11.13 (282.7)	5.84 (148.3)
4"	12.33 (313.2)	6.79 (172.5)
6"	15.77 (400.6)	8.62 (218.9)

The basic dimensions shown above are for Cam-Tite Ball Valves with severe service bonnets as described on page 11. All components with the exception of the bonnet, stem, and stem seals are interchangeable on valves with standard bonnets. Otherwise, parts identification and materials are consistent with the standard bonnet and are described for the various configurations on pages 22-37. For complete dimensions and materials of construction for the severe service bonnet, consult the factory.

Service Guide

The following charts have been assembled based on experiences in actual field installations, as well as from commonly published corrosion data. Due to the many variables involved in determining the degree of compatibility between a certain material and a certain fluid, the charts must be used as a guide only, and cannot be interpreted as a guarantee. Factors such as temperature, concentration, pressure, velocity, aeration, abrasion, cavitation, flashing, etc play an important application role in determining the suitability of any material in a particular application and must also be taken into consideration.

The selection of a suitable valve body material for a particular application is much easier than the selection of other valve components such as seats, ball, stem and packing.

		Bo	dy/	'Tri	m	S	iea	ts/F	Pacl	kin	g
Chemicals	Carbon Steel	316 Stainless Steel	Alloy 20	Monel	Hastelloy C	EPDM	PEEK	Graphite	PTFE	Reinforced (PTFE)	UHMWP
Acetaldehyde	С	А	А	А	А	В	А	А	А	А	D
Acetamide	В	В			А			А	А	А	
Acetate Solvents	А	А		А	А		А	А	А	А	
Acetic Acid, Aerated	D	А		А	А			А	А	А	
Acetic Acid, Air Free	D	А	А	А	А			А	А	А	
Acetic Acid, Crude	С	А	А	В	А			А	А	А	
Acetic Acid, Glacial		D			А	В	А	А	А	А	
Acetic Acid, Pure	D	А	А	С	А		А	А	А	А	С
Acetic Acid, 10%	С	А	А	В	А	В		А	А	А	А
Acetic Acid, 80%	С	А	А	В	А	C		А	А	А	С
Acetic Acid Vapors		D	В	С	А		А	А	А	А	
Acetic Anhydride	D	В	В	В	А	C	А	А	А	А	С
Acetone	А	А	А	А	А	A	А	А	А	А	Α
Acetyl Chloride		С		В	А	D	А	А	А	А	
Acetylene	А	А	А	А	А	Α	А	А	А	А	
Acrylonite	А	А	В	А	Α	D		А	А	А	
Acryolontrile	А	А	А	А					А	А	
Adipic Acid	А	А	В	В			В		А	А	
Acid Fumes	D	В	В					С	А	А	
Air	А		А	А	А	A	А	В	А	А	А
Albumen		А							А		

A = Excellent

B = Fair

A certain amount of corrosion is sometimes acceptable on the valve body, but the seats, ball and stem materials must be chosen carefully since corrosion of these components will likely affect the sealing characteristics of the valve.

In addition to the compatibility of the material to the fluid, care must be taken to select materials and designs that are capable of withstanding the actual pressures and temperatures. Consult pages 16–17 of this catalog for pressure / temperature ratings of valves with various seats.

Engineered Valves cannot accept responsibility for the accuracy, currency or reliability of the information contained herein. Selection of materials is at the sole risk of the user. Consult factory for services not listed.

		Bo	dy/	'Tri	m	S	iea	ts/F	Pac	kin	g
Chemicals	Carbon Steel	316 Stainless Steel	Alloy 20	Monel	Hastelloy C	EPDM	PEEK	Graphite	PTFE	Reinforced (PTFE)	UHMWP
Alcohol, Allyl	А	А	А	А					А	А	
Alcohol, Amyl	В	Α	В	В	В	Α	A	A	A	A	
Alcohol, Benzyl		Α			Α				A	A	
Alcohol, Butyl	В	A	А	А	А	С	A	A	A	A	
Alcohol, Diacetone	А	Α	А	В	Α	В		A	A	A	
Alcohol, Ethyl	В	В	А	В	Α	Α	A	A	A	A	A
Alcohols, Fatty	В	Α	А		А			A	A	A	
Alcohol, Furfuryl		Α							A	A	
Alcohol, Isopropyl	В	В	А	В	В	А		A	A	A	
Alcohol, Methyl	В	Α	А	А	А	Α	A	A	A	A	
Alcohol, Propyl	В	Α	А	А	А	Α	A	A	A	A	
Alumina		Α			А	А	A	A	A	A	
Aluminum Acetate		Α	В	С	В	Α	A	A	A	A	A
Aluminum Chloride Dry	С	C	D	В	В	Α	A	A	A	A	
Aluminum Chloride Solution		D	В	В	А		A	A	A	A	Α
Aluminum Fluoride	D	C		В	А	А		A	A	D	A
Aluminum Hydroxide	D	Α	В	В	В	Α		A	A	A	А
Aluminum Nitrate		C	В	С	В	В		В	A	A	
Alum (Aluminum Potassium Sulfate)		В	В	с	А			А	А	А	А
Aluminum Sulfate	D	В	В	С	А	А		A	A	A	А

C = Poor

Chemicals No			Bo	dy/	/Tri	m	S	iea	ts/F	Pac	kin	g				dy/	Tri	m	S	eat	ts/F	Pack	cing	g
Ammonia, Alum A <	Chemicals		6 Stainless	Alloy 20	Monel	oy	EPDM	PEEK	Graphite	PTFE		UHMWP	Chemicals		6 Stainless	Alloy 20	Monel		EPDM	PEEK	Graphite	PTFE		UHMWP
Anmonia, Aqueous A A A B B A A A B B A A A B B A A A B B A A A B B A A A A B B A	Amines	В	А	А	В	В	с	А	А	А	Α		Barium Sulfate	с	А	А	В		в		А	А	А	А
Anymonia Aqueous A A B A	Ammonia, Alum		A	A		A			А	A	A		Barium Sulfide	с	В	в	c		A		А	Α	A	A
Ammonia, Aqueous A A B A Benzyl Choride B B A A A A A A A A Benzyl Choride B B A A A A Benzyl Choride B B B A A A Benzyl Choride B B A A A A A A A Benzyl Choride B B A A A A A A A A A A A A A A A A A A <													Benzaldehyde	А	А	Α	В	В	A		А	Α	A	D
Ammonia Liquor A A B B A							B						Benzene (Benzol)	В	В	Α	Α	В	D	D	А	Α	A	D
Ammonia Liquor A B Bick Suffact Liquor C B B A A A A A A B Bick Suffact Liquor C B B A A A A B Bick Suffact Liquor C B B A A A B Bick Suffact Liquor C B B A A A B Bick Suffact Liquor C B B A A A Bick Suffact Liquor C B A A A Bick Suffact Liquor C B B A A A		A											Benzoid Acid	D	В	В	В	Α	D		А	Α	A	A
Ammonia o'utions B A					B		A	A				A	Beryllium Sulfate		В	Α	В		В		А	Α	A	
Ammonium Acetate B B B A						_							Benzyl Chloride	В	В							Α	A	
Ammonium Bicarbonate C B B B A B Bordicaux Mixture A A A A A A A A A A A A A A A A A A A		В											Black Sulfate Liquor	c	В	В	В					A	A	
Ammonium Bromide 50% B B B B A						В							Bleaching Powders	D	В	В	D					Α	A	
Ammonium Carbonate B B B B B B B A B B B A A A A A A B B B A A A B B B A A A A B B B A A A A A A B B B B		C	_				A						Bleaching Powder, Wet		С	В	D	А	В		А	Α	A	A
Ammonium Chloride D C B B A B B A A A A A A A A A A A A A A A A A A A													Blood (Meat Juices)		А	A	В		В	A	А	A	A	
Ammonium Hydroxide, 2G B A D B B A <td></td> <td></td> <td></td> <td></td> <td></td> <td>Ь</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Borax (Sodium Borate)</td> <td>С</td> <td>Α</td> <td></td> <td>A</td> <td>А</td> <td>A</td> <td>A</td> <td>Α</td> <td>A</td> <td>A </td> <td>A</td>						Ь							Borax (Sodium Borate)	С	Α		A	А	A	A	Α	A	A	A
Annonium Hydroxide, Concentrated C B A C B A					_								Bordeaux Mixture		А	A					Α	Α	A	
Concentrated C B A C B A C B A A A Ammonium Monophosphate D B B B B B B B A A A Ammonium Monophosphate D B D B D B B D B A A A A Ammonium Monophosphate D B D B A			D			D	P		A				Boric Acid	D	В	В		А	В	A	А	A	A	A
Ammonium Monopulsipate A A B B A <td></td> <td>с</td> <td>В</td> <td>A</td> <td>c</td> <td>В</td> <td>A</td> <td></td> <td>А</td> <td>A</td> <td>A</td> <td>A</td> <td>Brake Fluid</td> <td></td> <td>В</td> <td></td> <td>В</td> <td></td> <td> </td> <td></td> <td>Α</td> <td>A</td> <td>A </td> <td></td>		с	В	A	c	В	A		А	A	A	A	Brake Fluid		В		В				Α	A	A	
Ammonium Monosulitate A B B B B B A	Ammonium Monophosphate	D	В	В	В					A	A			D	В		В	А	Α			A	A	A
Ammonium Nirtate D A B A	Ammonium Monosulfate		A	в	В	В				A	A	A						А	D	D	В	A	A	D
Ammonium Persuitate A A D B A	Ammonium Nitrate	D	A	В	D	В	A		В	A	A	A	Bromine, Wet	D	D	D	D					A		
Ammonium Phosphate D B B C A A A A A A A A A C	Ammonium Persulfate		A	A	D		В			A	A	A												
Ammonium Phosphate D B B C B A A A A A A A A A A A B A A B A A B A	Ammonium Phosphate	D	В	В	с		A		А	A	A	A												
Ammonium Phosphate Tri-basic D B B C B A																								
Tri-basic D B B C B A		D	B	B	C	В			A	A	A			В						A				
Ammonium Sulfate C B B B B A			в	R	C	B		Δ	Δ	Δ								В						D
Ammonium Sulfide D B B D A Calcium Chlorate D B B A A A A A A A Calcium Chlorate D Calcium Chlorate Calcium Chlorate B B A A A A A A A A A A A A A A<		-					Δ				Δ													
Ammonium SulfiteCABDVBAAAAACalcium CarbonateDBBBBBAAA <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td>A</td><td></td><td></td><td></td><td></td></th<>																				A				
Amyl Acetate C B A B A <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> · ·</td><td></td><td></td><td>_</td><td>_</td><td>_</td><td>_</td><td></td><td></td><td></td><td>. </td><td>. </td><td></td></t<>												· ·			_	_	_	_				.	.	
Amyl Chloride A A B B D A A A D Calcium Chlorate C B B A B A A A A Aniline C B A B B C A Calcium Hydroxide D C B B B A A A A A A A A A				A	_	A	B		A	A	A	A		ט				в		A				
Aniline C B A B C A C Calcium Hypochlorite D C B B C B B A A A A C Calcium Hypochlorite D C B A A A A A A A A A <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>,</td><td> </td><td></td><td></td><td></td><td></td><td></td></th<>																		,						
Aniline DyesCAA <th< td=""><td></td><td>с</td><td></td><td></td><td></td><td>В</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td></td><td></td><td></td><td></td><td></td></th<>		с				В																		
Antimony Trichloride D D C B A A A A Calcium Nitrate B B B B B B A A A Aqua Regia (Strong Acid) D B B D D D D D D D D D A A Calcium Nitrate B B B B A A A A Aromatic Solvents C A A B A A A A Calcium Nitrate B B B A A A A A Calcium Nitrate B B B A A A A Calcium Nitrate B B B A A A A Calcium Sulfate B B B A A A A Calcium Sulfate C B B A A A A Calcium Sulfate B Calcium Sulfate B Calcium Sulfate B A A A A A A			A	A	A		с		А									Â			A			
Aqua Regia (Strong Acid)DBBCDDDDAACCalcium PhosphateBBBBBAAAAAAromatic SolventsCAABDAA			D	с	В					A	A								Ь		D			
Aromatic SolventsCABDAAAACalcium FilosphateBBBBBAAAAArsenic AcidDBBDBBAAAAAACalcium SilicateBBBBBAAA<							D	D	D			c												
Arsenic AcidDBDDBDBDBDBAA <th< td=""><td></td><td>с</td><td>A</td><td>A</td><td>В</td><td></td><td>D</td><td></td><td>А</td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td> </td><td></td><td></td><td></td><td></td><td>$\left \right$</td></th<>		с	A	A	В		D		А							_								$\left \right $
Barium Carbonate B B B B B A Camphor B C C B A A A A A A A A A Camphor C B C C B A A A A A A A A A A A A A Camphor Camphor C B A A A A A Camphor Camphor Camphor A A A A A Camphor Camphor Camphor A A A A Camphor Camphor Camphor	Arsenic Acid		в	В	D	В	в		А			A		6		-	R	R						
Barium ChlorideCBCBAAA	Barium Carbonate	в	В	В	В	A	A		А											$\left \right $				
Barium CyanideBBDBAAAAACarbolic Acid (Phenol)DBABBAAAAABarium HydroxideCBABBBBBAAAAAACarbonated BeveragesDBBCBAAAAAABarium HydroxideCBABBBBAAA <th< td=""><td>Barium Chloride</td><td>с</td><td>в</td><td>с</td><td>В</td><td></td><td>A</td><td></td><td>А</td><td>A</td><td>A</td><td>A</td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td></td><td></td><td></td><td></td><td></td></th<>	Barium Chloride	с	в	с	В		A		А	A	A	A												
Barium Hydrate A A B A A A A Carbonated Beverages D B B C B A	Barium Cyanide		В	в	D		в		А	A	A													
Barium Hydroxide C B A B B A A A Carbonated Water B A B A	Barium Hydrate		A	A	В				А	A	A													
	Barium Hydroxide	с	в	A	В		в		А	A	A	A				_								A
BIBIBIBI IDI IAIAIAIDI	Barium Nitrate		A		A				В	A	A		Carbon Bisulfide	В	В	В	В		D		A	A		D

ered Ives $\mathsf{B}=\mathsf{Fair}$

C = Poor

		Bo	dy/	'Tri	m	S	Sea	ts/F	Pac	kin	g			Bo	dy/	Tri	m	S	eat	ts/F	Pacl	cing	g
Chemicals	Carbon Steel	316 Stainless Steel	Alloy 20	Monel	Hastelloy C	EPDM	PEEK	Graphite	PTFE	Reinforced (PTFE)	UHMWP	Chemicals	Carbon Steel	316 Stainless Steel	Alloy 20	Monel	Hastelloy C	EPDM	PEEK	Graphite	PTFE	Reinforced (PTFE)	UHMWP
Carbon Dioxide, Dry	А	А	А	А		в		А	А	А	А	Cyanide Plating Solution		в	В	D		в			А	А	
Carbon Monoxide		A	А	А	А	в	A		A	A	A	Cyclohexane	Α	A	A	В	В	D	Α	А	Α	A	c
Carbon Tetrachloride, Dry	В	A	А	А	А	D	A	A	A	A	D	Cyclohexanone		A	A	В	В		В	А	А	A	D
Carbon Tetrachloride, Wet	D	В	В	В	В	D	A	A	A	A	D	Denatured Alcohol	В	A	A	А					Α	A	
Castor Oil	В	A	А	А	А	В		A	A	A	Α	Detergents, Synthetic		В	A	В		В		А	Α	A	A
Caustic Potash (KOH)		A	Α	В			В	A	A	A		Dextrin		В	В	В		В		А	А	A	Α
Caustic Soda (NaOH)	В	A	Α	А		В	В	A	A	A		Diacetone Alcohol	А	A	A	А					А	A	
Cellulose Acetate		В		В	В	В		A	A	A		Diamylamine		A	A						Α	A	
Chlorinated Solvents	С	A	А	В		D	D	A	A	A		Dibutyl Phthalate									Α	A	
Chlorinated Water		C	А	D	D		D	A	A	A	С	Dichloroethane		C	В	В		D		А	Α	A	
Chlorine, Dry	В	D	В	А	А				A	A		Dichloroethyl Ether		В	В			D			Α	A	
Chlorine, Wet	D	D	С	D	А				A	A		Diesel Oil Fuels	Α	A	A	А		D		А	Α		
Chlorine Gas, Dry	В	В	Α	А	А	D	D	A	A	A	D	Diethylamine	А	A	A	В		C		А	Α	A	
Chlorobenzene, Dry	В	A	Α	В	В	D	В	A	A	A	D	Diethyl Benzene		В	В			D		А	Α	A	
Chloroform, Dry	В	A	Α	А	В	D		A	A	A		Diethylene Glycol		A	A	В		Α	A	А	Α	A	A
Chlorophyll, Dry		В	Α	В		В		A	A	A		Diethyl Sulfate		В	В	В		С		А	Α	A	
Chlorosulfonic Acid, Dry	В	В	В	В	А	D	D		A	D	D	Dimethyl Formamide		A	A	В		D	A	А	Α	A	
Chlorosulfonic Acid, Wet	D	D	D	С					A	A		Dimethyl Phthalate		D						А	Α	A	
Chrome Alum	В	A	Α	В		В		A	A	A	A	Dioxane		В	В	В		C	A	А	Α	A	
Chromic Acid <50%	D	C	В	C	В	С	D	A	A	A	A	Dipentane (Pinene)		A	A			D		Α	A	A	
Chromic Acid >50%	D	C	В	D	В	С	D	A	A	A		Disodium Phosphate		В	В	C				А	Α	A	A
Chromium Sulfate		В	С	В		В		A	A	A		Dowtherm	В	A	A	A		D	A	А	A	A	
Citric Acid	D	В	A	В	Α	В	A	A	A	A	A	Drilling Mud	В	A	A	В		Α		А	A	A	
Coke Oven Gas	В	A	A	В		D		A	A	A		Dry Cleaning Fluids	В	A	A	В				Α	A	A	
Cooking Oil	В	A	A	Α		D		A	A	A		Drying Oil	С	B	В	В				А		A	
Copper Acetate	D	A	A	C	В	В		A	A	A		Enamel		A				D		Α		A	
Copper Carbonate		A	А					A	A	A		Epsom Salts (MgSo4)	С	В	В	В				Α	Α	A	
Copper Chloride	D	D	D	C		_			A	A		Ethane	C	B	B	В		D	A	A	A	A	
Copper Cyanide	_	A	A	C		В		A	A	A	A	Ether	A	A	A	В		C	A	A	A		D
Copper Nitrate	D	B	В	D	_	B		B	A	A	A	Ethyl Acetate	B	B	B	В	B			A	A	A	С
Copper Sulfate	D	B	В	C	А	A		A	A	A	A	Ethyl Acrylate	С	A	A	В	А	C		Α	A	A	
Corn Oil	C	B	В	B		C		A	A	A	A	Ethylamine		A									A
Cottonseed Oil	C	B	В	В		C	A	A	A	A	A	Ethyl Benzene		B	A	-	Α			A	A	A	
Cresol		B	B		_	D		A	A	A	D	Ethyl Bromide		B	C	В		B		A		A	
Creosote Oil	B	B	A	В	В	D	A	A	A	A	D	Ethyl Chloride, Dry	B	A	A	В	B			A	A		D
Cresylic Acid	C	B	B	B		D		A	A	A	A	Ethyl Chloride, Wet	D	B	B	B	В	В		А	A		A
Crude Oil, Sour	B		A	B		D		A	A	A		Ethylene	A	A	A	Α					A	A	
Crude Oil, Sweet	B	A	A	A P			A	A	A	A		Etylenediamene		A			_	Б				A	
Cumeme	В	B	B	B					A	A		Ethylene Chloride			A	A	В	В		А		A	
Cupric Nitrate	_	A	A	D A				B	A	A		Ethylene Dichloride, Dry	B	A	A	A Þ						A	
Cutting Oils (Water Emulsions)	В	A		A				A	A	A		Ethylene Dichloride, Wet	יי	C	A	В					A	Α	

C = Poor

		_	dy/	/Tri	m	S	ea	ts/I	Pac	kin	g	 			dy/	Tri	m	S	eat	ts/P	ack	in	3
Chemicals	Carbon Steel	316 Stainless Steel	Alloy 20	Monel	Hastelloy C	EPDM	PEEK	Graphite	PTFE	Reinforced (PTFE)	UHMWP		Carbon Steel	316 Stainless Steel	Alloy 20	Monel	Hastelloy C	EPDM	PEEK	Graphite	PTFE	Reinforced (PTFE)	UHMWP
Ethylene Glycol	в	В	А	В	А	А	А	А	А	А	А	Gasoline, Refined	в	А	А	в	А	D		А	А	A	D
Ethylene Oxide	В	В	В	В	А	D	А	D	A	A	C	Gasoline, Sour	в	A	A	С	Α	D		A	A	A	D
Ethyl Ether		Α	Α	Α	В	D	А	A	A	A		Gasoline, Unleaded	A	A	A	A	Α			A	A	А	D
Ethyl Silicate		В	В	В		В		A	A	A		Glue	A	В	A	В	Α	В	A	A	A	А	A
Ethyl Sulfate		В	В			С		A	A	A		Glutamic Acid		В	A						A	А	
Fatty Acids	D	A	A	В	А	D	А	A	A	A	A	Glycerine (Glycerol)	c	Α	Α	Α	Α	A	A	A	A	А	A
Ferric Chloride	D	D	D	D					A	A		Glycol Amine		в			D	D		A	A	А	
Ferric Hydroxide		Α	Α	Α				A	A	A		Glycol	c	В	A	в		A	A	A	A	А	
Ferric Nitrate	D	с	Α	D	В	Α		В	A	A	A	Helium Gas		Α	A	В	Α	В	A	A	A	А	A
Ferric Sulfate	D	В	Α	D		А		A	A	A	A	Heptane	в	A	A	в	Α	D	A	A	A	А	c
Ferrous Ammonium Citrate		В	В					A	A	A	A	Hexane	в	Α	A	В	Α	D	A	A	A	A	D
Ferrous Chloride	D	D	D	D	D	Α		A	A	A	A	Hexanol, Tertiary	A	Α	A	Α	Α	D		A	A	А	A
Ferrous Sulfate	D	В	В	В	В	Α		A	A	A	A		A	Α	A	Α		D		A	A	A	
Ferrous Sulfate, Saturated	с	Α	Α	В	В	В		A	A	A		Hydrazine		в	в	D		в			A	A	
Fertilizer Solutions	в	В	В	В				A	A	A			D	D	D	D					A	A	
Fish Oils	в	Α	Α	Α		D		A	A	A			D	D	D	D						Α	
Flue Gases		Α	Α	В		D		A	A	A			D	Α	Α	c	в	в	Α			A	A
Fluoride Salts		В							Α	D			B	В	В	A	_					D	
Fluorine Gas, Dry		В	Α	Α	А		D		A	D			D	c	В	В		в	D	Α		D	
Fluoboric Acid		В	A						A	D	A		B	A	A	A		В	A	A		A	A
Fluorosilicic Acid	D	В	В	Α	в	с			A	D	A		B	В	A		Α	В	A	A		A	A
Formaldehyde, Cold	A	A	A	A	В	В		A	A	A	A	Hydrogen Bromide Gas										A	
Formaldehyde, Hot	D	c	В	В	В	-		A	A	A	A		D	в	Α	в						A	
Formic Acid, Cold	D	В	A	В	A			A	A	A	A	Hydrogen Peroside,											
Formic Acid, Hot	D	В	В	В	В			A	A	A	A		D	В	В	D	D	В	A	D	A	А	c
Freon Gas, Dry	В	A	A	A	В	с	А	A	A	A	· ·	Hydrogen Peroxide, Dilute	D	В	В	D	D	В	A	c	A	А	A
Freon 11, MF, 112, BF		A	A	В	В	c	A	A		A		Hydrogen Sulfide, Dry	в	Α	В	в	В	A	A	A	A	А	A
Freon 12, 13, 32, 114, 115		A	A	В	В	A	A	A	A	A		Hydrogen Sulfide, Wet	c	В	В	с	D	В	A	A	A	А	A
Freon 21, 31		A	A	В	В	D	A	A	A			Hypo (Sodium Thiosulfate)	D	в	в	В		A		A	A	А	
Freon 22		A	A		В	D	A	A	A	A		Illuminating Gas	A	Α	A	Α		D		A	A	А	
Freon 113, TF		A	A	в	B	C	A		A			Ink-Newsprint	D	Α	A	в		в		A	A	А	A
Freon, Wet		c	B	B	В	В	D	A	A			Iso-Butane		в	в			D		A	A	А	
Fuel Oil	в	A	A	В	5		D		A		D	Iso-Octane	A	Α	A	Α		D	A	A	A	А	
Fumaric Acid			A	ט					A			Isopropyl Acetate		в	A			D	A	A	A	А	
Gallic Acid 5%	D	в	B	в	в	с			A		A		A	Α	A	в	Α	D	A	A	A	A	
Gas, Manufactured	В	B	B	А	U	D		A	A		 		A	A	A	Α	Α		A	A	A	A	
Gas, Manufactured Gas, Natural	В	А	В	A		D							A	Α	A	Α	Α		A	Α	A	А	
	В	B		B		רן			A				A	Α	A	Α	Α		A	A		A	
Gas, Odorizers			A						A		D	Kerosene	в	Α	A	Α	Α	D	A	A		A	c
Gasoline, Aviation	A	A	A	A	A			A		A	D		A	Α	A	Α		D	A	A		A	
Gasoline, Leaded	A	A	A	B	A		A	A	A		D		c	Α	A	Α		D		A		A	
Gasoline, Motor	Α	Α	Α	Α	А	D	Α	A	A	A	יין												

B = Fair

C = Poor

		Bo	dy/	'Tri	m	5	iea	ts/F	Pac	kin	g	
Chemicals	Carbon Steel	316 Stainless Steel	Alloy 20	Monel	Hastelloy C	EPDM	PEEK	Graphite	PTFE	Reinforced (PTFE)	UHMWP	c
Lactic Acid Concentrated, Cold	D	А	А	D	А	В	А	А	А	А	А	Meth
Lactic Acid Concentrated, Hot	D	В	Α	D	В	В	A	A	A	A	A	Meth
Lactic Acid Dilute Cold	D	A	Α	С	Α	В	A	A	A	A	A	Meth
Lactic Acid Dilute Hot	D	A	Α	D	В		A	A	A	A	A	Meth
Lactose		В	В	В		В		A	A	A		Meth
Lard Oil	С	В	Α	В		В	A	A	A	A	A	Meth
Lead Acetate	D	В	В	В		В	A	A	A	A	A	Meth
Lead Arsenate	В								A	A		Meth
Lead Oxide									A	A		Meth
Lead Sulfate		В	В	В		В		A	A	A		Meth
Lecithin		В	В	В		D			A	A		Mine
Linoleic Acid	В	A	Α	В		D		A	A	A		Mine
Linseed Oil	А	A	A	В		D	A	A	A	A	A	Mine
Lithium Chloride		В	Α	В		В	A	A	A	A		Moly
LPG	В	В	В	В		D	A	A	A	A		Mond
Lubricating Oil (Petroleum Based) Lye — See Sodium Hydroxide & Potassium Hydroxide	А	А	А	В		D		А	А	А	с	Mono Morp Muria
Magnesium Bisulfate	В	A	Α	В		В	A	A	A	A		Napth
Magnesium Bisulfide		В	В	В		В	A	A	A	A		Napth
Magnesium Carbonate		A	A	В		В	A	A	A	A	A	Natur
Magnesium Chloride	С	В	В	В	A	A	A	A	A	A	A	Nicke
Magnesium Hydroxide	В	A	Α	В	В	A	A	A	A	A	A	Nicke
Magnesium Hydroxide, Hot	В	A	A	А	В		A	A	A	A	A	Nicke
Magnesium Oxide									A	A		Nicke
Magnesium Nitrate		A	Α	В			A	В	A	A	A	Nicot
Magnesium Sulfate	В	A	Α	В	A	A	A	A	A	A	A	Nitric
Maleic Acid	В	В	В	В	Α	D	A	A	A	A	A	Nitric
Maleic Anhydride		В	В	В	В	D		A	A	A		Nitric
Malic Acid	D	В	В	В			A	A	A	A		Nitric
Manganese Carbonate		В	Α				A	A	A	A		Nitric
Manganese Sulfate		A	Α	В		В	A	A	A	A		Nitrol
Meat Juices		A	Α					A	A	A	A	Nitro
Melamine Resins		c	С					A	A	A		Nitro
Methanol		A	A	В		D		A	A	A		Nitro
Mercuric Chloride	D	В	В	D	В	A	A	A	A	A	A	Nitro
Mercuric Cyanide	D	A	А	С	В	A	A	A	A	A	Α	Nitro
Mercurous Nitrate		A	Α	D			A	В	A	A	Α	Oil, Li
Mercury	А	A	Α	В	В	A	A	A	A	A	A	Oil, L
Methane	В	A	А	В	Α		A	A	A	A		Oils P
Methyl Acetate	В	A	A	В	A	В	A	A	A	A		Oils, I
	I					L						

		Bo	dy/	/Tri	m	S	ea	ts/F	Pac	kin	g
Chemicals	Carbon Steel	316 Stainless Steel	Alloy 20	Monel	Hastelloy C	EPDM	PEEK	Graphite	PTFE	Reinforced (PTFE)	UHMWP
Methyl Acetone	А	Α	A	A		Α	А	A	A	A	
Methylamine	В	Α	A	C	В	В	А	A	A	A	
Methyl Bromide 100%		В	A	В		D	А	A	A	A	D
Methyl Cellosolve	В	A	A	В	В	В		A	A	A	
Methyl Cellulose		A	A		В			A	A	A	
Methyl Chloride	В	A	A	В		D	Α	A	A	A	D
Methyl Ethyl Ketone	Α	A	A	A	В	В	С	A	A	A	D
Methylene Chloride	B	A	A	B	B	D	А	A	A	A	D
Methyl Formate	С	B	A	В	В	В		A	A	A	
Methyl Isobutyle Ketone		A	A					A	A	A	
Mineral Oils	В	A C	A C	A		D	Α	A	A	A	D
Mine Water (Acid) Mineral Spirits	D B	B	B	C B				A	A	A	D
Molybdic Acid	D	А	A	D							
Monochloroacetic Acid	D	D	c	D							
Monocloro Benzene, Dry		В	В	В			в	A			
Morpholine		A	A	В		в	U				
Muriatic Acid	D	D		D	D				A		
Naptha	В	В	В	В	A	D	А	A	A	A	D
Napthalene	В	В	В	В	В	D	A	A	A	A	D
Natural Gas, Sour	В	A	A	D	A	D	A	A	A	A	A
Nickel Ammonium Sulfate	D	A	A	c		В		A	A	A	
Nickel Chloride	D	В	Α	В	Α	В	А	Α	A	A	Α
Nickel Nitrate	D	В	A	В		A	А	В	A	A	Α
Nickel Sulfate	D	В	A	В	В	в	А	A	A	A	Α
Nicotinic Acid (Niacin)	в	А	A	A		D		A	A	A	А
Nitric Acid 10%	D	А	A	D			в	в	A	A	А
Nitric Acid 30%	D	А	A	D		в	в	D	A	A	А
Nitric Acid 80%	D	с	в	D		D	D	D	A	A	D
Nitric Acid 100%	D	А	A	D		D	D	D	A	A	D
Nitric Acid Anhydrous	D	Α	A	D		D	D	D	A	A	
Nitrobenzene	в	А	A	В	В	С	с	A	A	A	D
Nitrocellulose	В	В	В	В					A	A	
Nitrogen	А	А	A	A		В	А	A	A	A	Α
Nitrous Acid 10%	D	В	В	D			D	A	A	A	
Nitrous Gases	В	А	A	D			А	A	A	A	
Nitrous Oxide	В	В	В	D	В		А	A	A	A	
Oil, Linseed	А	Α	A	В					A	A	
Oil, Lubricating	А	Α	A	В					A	A	
Oils Petroleum Refined	А	Α	A	A	Α	D	А	A	A	A	
Oils, Petroleum Sour	В	Α	A	A	Α	D	А	A	A	A	

B = Fair

C = Poor

		Bo	dy/	Tri	m	S	iea	ts/I	Pac	kin	g			Bo	dy/	'Tri	m	S	eat	ts/P	ack	cin	g
Chemicals	Carbon Steel	316 Stainless Steel	Alloy 20	Monel	Hastelloy C	EPDM	PEEK	Graphite	PTFE	Reinforced (PTFE)		Chemicals	Carbon Steel	316 Stainless Steel	Alloy 20	Monel	Hastelloy C	EPDM	PEEK	Graphite	PTFE	Reinforced (PTFE)	UHMWP
Oils Water Mixture	в	А	А		А		А	А	А	Α		Potassium Chlorate	В	В	в	с		в		с	А	А	А
Olaic Acid		В	В	А				A	A	A		Potassium Chloride	С	В	Α	В	В	Α		A	A	А	A
Oleic Acid	С	В	Α	В	В	D	D	A	A	A	c	Potassium Chromate		В	В	В		В			A	А	A
Oleum	В	В	В	С	В	D			A	A	D	Potassium Cyanide	В	В	В	В	в	A		A	A	А	A
Oleum Spirits		В	В	D		D			A	A		Potassium Dichromate	С	В	Α	В		В			A	А	A
Olive Oil	В	Α	Α	А		В	A	A	A	A	A	Potassium Ferricyanide	С	A	В	В		В		A	A	А	A
Oxalic Acid	D	В	В	В		В	A	A	A	A	A	Potassium Ferrocyanide	С	В	В	А				A	A	А	A
Oxygen	в	Α	Α	А	А	A	D	D	A	A	A	Potassium Hydroxide,											
Ozone, Dry	А	Α	Α	А	А	A	D		A	A	c	Dilute Cold	A	В	В	А				A	A	A	A
Ozone, Wet	с	Α	Α	А	А	в	D		A	A	c	Potassium Hydroxide,											
Paints & Solvents	Α	Α	Α	А		D		A	A	A	A	To 70%, Cold	B	B	В	Α		В		A	A	А	A
Palmitic Acid	с	В	В	В		В	A	A	A	A		Potassium Hydroxide, Dilute Hot	в	В	в	А				Α	A	А	A
Palm Oil	с	в	Α	А		D		A	A	A	A	Potassium Hydroxide,											
Paraffin	в	Α	Α	А	А	D	A	A	A	A	с	To 70%, Hot	A	В	В	А		Α		A	A	А	A
Paraformaldehyde	В	В	В	В		D		A	A	A		Potassium lodide	С	В	В	В	в	в		A	A	А	
Paraldehyde	-	В	В	-		D		A	A	A		Potassium Nitrate	В	В	В	В	в	в		В	A	А	A
Pentane	в	Ā	A	в		D	A	A	A	A		Potassium Oxalate		A	Α				A	Α	A	А	
Perchlorethylene, Dry	В	A	A	В	В	D		A	A	A		Potassium Permanganate	В	В	В	В	в	в	D		A	А	A
Phenol	D	A	A	A	A	D		A	A	A	D	Potassium Phosphate		В	В	В	в	A	D		A	А	A
Phosphate Ester	A	A	A	A	, i	A		A	A	A		Potassium Phosphate,											
Phosphoric Acid 10% Cold	D	c	В	c		ľ`			A	A		Di-basic	A	A	Α	В	В	В		A	A	А	
Phosphoric Acid 10% Hot	D	c	В	В					A			Potassium Phosphate,				Б						^	
Phosphoric Acid 50% Cold	D	В	В	c		в	D	A			A	Tri-basic	A	B	B	В		В		A	A	A	
Phosphoric Acid 50% Hot	D	D	В	c		В	D					Potassium Sulfate	B	A	A	B		A		A		A	A
Phosphoric Acid 85% Cold	В	A	В	A			D					Potassium Sulfide	B	A	A	C		В		A	A	A	A
Phosphoric Acid 85% Hot	ь С	B	В	A			D					Potassium Sulfite	B	A .	A	C	В	A		A	A	A	A
•								A			A	Propane Gas B	В	A	В	Α	D	A	A	A	A	Α	
Phosphoric Anhydride	Ь	A	A				D	A	A			Propionic Acid	D	B	В	В						A	
Phosphorous Trichloride	B	A	A	^	Б	В	D	A	A	A	A	Propyl Alcohol	В	A	A	Α					A	A	
Phthalic Acid	C	B	В	A	B		В	A	A	A		Propyl Bromide		B	A	В		В		A		A	
Phthalic Anhydride	C	В	B	A	Α			A	A	A	A	Propylene Glycol	В	B	В	В		В	A	A	A	A	A
Pine Oil	В	A	A	В		D		A	A	A	D	Pyridine		B	A					A	A	A	
Pitch (Bitumen)		A	A	_		D		A	A	A		Pyrolgalic Acid	В	В	A	В					A	A	
Polysulfide Liquor		В	Α	В		В		A	A	A		Pyroligenous Acid		A	В						A	A	
Polyvinyl Acetate		В	В	В		В		A	A	A		Quinine, Sulfate, Dry		A	Α	В				A	A	А	
Polyvinyl Chloride		В	В	В	В	B		A	A	A		R P-1 Fuel	A	A	Α	А				A	A	А	
Potassium Bicarbonate		A	A	В				A	A	A	A	Rubber Latex Emulsions	В	A	Α					A	A	А	
Potassium Bichromate		Α	Α	Α				A	A	A		Salicyclic Acid	D	A	В	В		в	A	A	A	А	A
Potassium Bisulfate		Α	Α	В				A	A	A		Salt (NaCl)	С	В	Α	А			A	A	A	А	A
Potassium Bisulfite	D	В	В	D	В			A	A	A		Salt Brine		В	В	В		В	A	A	A	А	Α
Potassium Bromide	D	Α	В	В	В			A	A	A	A	Sea Water	D	В	В	А		A	A	A	A	А	A
Potassium Carbonate	В	В	В	В		В		A	A	A	A	Sewage	с	В	В	В		В	А	А	Α	А	A

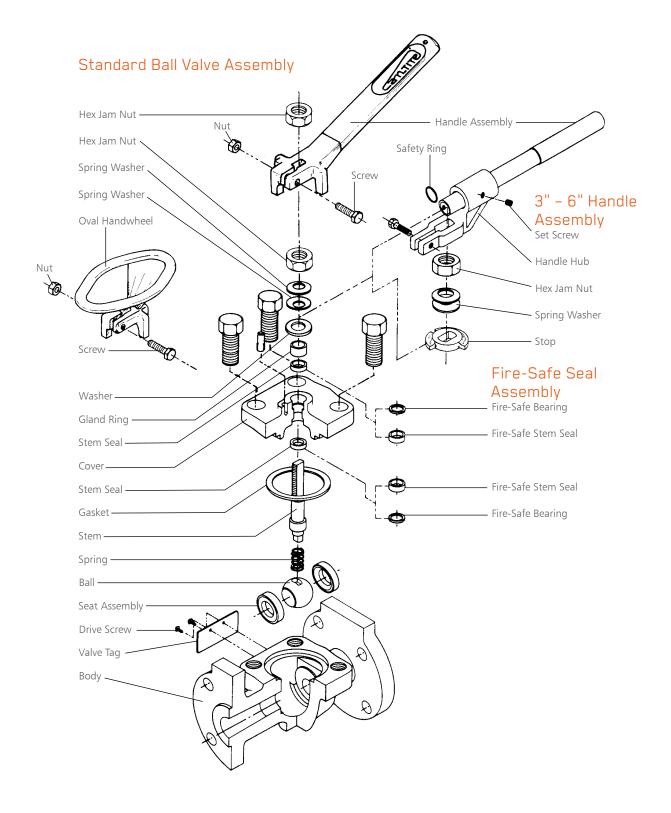
B = Fair

C = Poor

		Bo	dy/	Tri	m	S	iea	ts/I	Pac	kin	g			Bo	dy/	Tri	m	S	eat	ts/P	ack	cin	g
Chemicals	Carbon Steel	316 Stainless Steel	Alloy 20	Monel	Hastelloy C	EPDM	PEEK	Graphite	PTFE	Reinforced (PTFE)	UHMWP	Chemicals	Carbon Steel	316 Stainless Steel	Alloy 20	Monel	Hastelloy C	EPDM	PEEK	Graphite	PTFE	Reinforced (PTFE)	UHMWP
Shellac	А	А	А	А			А	Α	Α	А		Sodium Phosphate	с	в	в	В	в	А		А	А	А	А
Silicone Fluids		В	В				A	A	A	A	c	Sodium Phosphate, Di-basic	с	В	В	В	В	A		A	A	А	
Silver Bromide		Α	Α	В				A	A	A		Sodium Phosphate, Tri-basic	С	В	В	В	В	A		Α	A	А	
Silver Cyanide		A	Α	В				A	A	A		Sodium Polyphosphate		В	В	В	В	A		Α	A	А	
Silver Nitrate	D	A	Α	D		A		В	A	A	A	Sodium Salicylate		Α	A					A	A	А	
Silver Plating Sol.		Α	Α						A	A		Sodium Silicate	В	В	В	В		В	A	A	A	А	А
Soap Solutions (Stearates)	А	A	Α	А		A		A	A	A		Sodium Silicate, Hot	с	В	В	В		В	Α	Α	A	А	А
Sodium Acetate	с	В	В	В	В	В	A	A	A	A	A	Sodium Stearate		В							A	А	
Sodium Aluminate	с	Α	В	в	В	в	A	A	A	A		Sodium Sulfate	в	Α	Α	А		A		Α	A	А	А
Sodium Benzoate		В	В	В			A	A	A	A	A	Sodium Sulfide	в	в	В	В		в		Α	A	А	А
Sodium Bicarbonate	с	В	Α	В		A	A	A	A	A	A	Sodium Sulfite		Α	Α	В	В	В		Α	A	А	А
Sodium Bichromate		В	В				A		A	A		Sodium Tetraborate		Α	Α			в		Α	A	А	
Sodium Bisulfate 10%	D	Α	Α	В		В	A	A	A	A	A	Sodium Thiosulfate	в	В	В	В		A		Α	A	А	
Sodium Bisulfite 10%	D	A	В	В	В	В	A	A	A	A	A	Soybean Oil	с	Α	Α	А		В	Α	Α	A	А	Α
Sodium Borate	с	В	В	В		в	A	A	A	A	A	Stannous Chloride	D	В	Α	С					A	А	
Sodium Bromide 10%	с	В	В	В		В		A	A	A	A	Stannous Fluoride		В	В						A	D	
Sodium Carbonate												Starch	с	В	Α	А		c	Α	Α	A	А	А
(Soda Ash)	В	A	Α	В	В	В		A	A	A	A	Steam (212°F)	Α	Α	Α	В		в	Α	Α	A	А	Α
Sodium Chlorate	С	В	В	C	В	В		В	A	A	A	Stearic Acid	с	в	в	В	Α	в		Α	A	А	Α
Sodium Chloride	С	В	Α	А	В	В		A	A	A	A	Styrene	Α	Α	Α	В	Α	D	Α	Α	A	А	
Sodium Chromate	В	A	В	В		В			A	A		Succinic Acid	в	в	В						A	А	
Sodium Citrate		В	В					A	A	A		Sulfate, Black Liquor	с	В	в	В		в		Α	A	А	
Sodium Cyanide	В	A	Α	В		В		A	A	A		Sulfate, Green Liquor	с	в	В	В				Α	A	А	
Sodium Ferricyanide		A	A	В				A	A	A	A	Sulfate, White Liquor	с	В	D	с				Α	A	А	
Sodium Fluoride	D	В	Α	В		В	A	A	A	D	A	Sulfite Liquors	D	в		D					A	А	
Sodium Hydroxide, 20% Cold	А	A	В	Α		В	A	A	A	D	A	Sulfonic Acid		в		В					A	А	
Sodium Hydroxide, 20% Hot	В	A	Α	Α		В		A	A	D	A	Sulfur	с	в	Α	В		в	Α	Α		А	Α
Sodium Hydroxide, 50% Cold	А	A	Α	Α		В		A	A	D	A	Sulfur Chlorides	D	D	Α	В		c		Α	A	А	
Sodium Hydroxide, 50% Hot	В	A	Α	В				A	A	D	A	Sulfur Dioxide, Dry	В	A	В	В	Α	A		Α	A	A	А
Sodium Hydroxide, 70% Cold	А	A	В	Α		В		A	A	D	A	Sulfur Dioxide, Wet	-	A	В	Ā	В	В		Α	A	A	A
Sodium Hydroxide, 70% Hot	В	A	В	В		В		A	A	D	A	Sulfur Hexafluoride			A	Α				Α	A	D	
Sodium Hypochlorite (Bleach)	D	D	С	D	А			A	A	A	A	Sulfur, Molten	с	в	Α	D	В	в	D	Α		A	
Sodium Hyposulfite		В	В	В				A	A	A		Sulfur Trioxide	В	В	В	-	В		-	D	A	A	
Sodium Lactate		Α	Α	в				A	A	A		Sulfur Trioxide, Dry	В	В	В	в	В	в		D	A	A	
Sodium Metaphosphate	в	В	В		А	в		A	A	A		Sulfuric Acid (0-7%)	D	В	c	c		[]		_	A	A	
Sodium Metasilicate Cold	с	A	A	Α				A	A	A		Sulfuric Acid (7-40%)	D	D	В	c					A	A	
Sodium Metasilicate Hot	D	Α	А	А	А			A	A	A		Sulfuric Acid (40-75%)	D	D	c	В			в		A	A	
Sodium Nitrate	в	Α	А	в	в	в	D		A	A	A	Sulfuric Acid (75-95%)	c	D	В	D			٦		A	A	
Sodium Nitrite		В	В	с	В	A		В	A	A	A	Sulfuric Acid (95-100%)	c	c	D	B					A	A	
Sodium Perborate	в	В	В	В	В	A		A	A	A		Sulfurous Acid	D	В	В	ь D	в	c		Α		A	
Sodium Peroxide	с	в	в	в	в	A		A	A	A			B							^			A
												Synthesis Gas	Б	В	В	Α					A	A	

B = Fair

C = Poor


		Bo	dy/	'Tri	m	S	iea ⁻	ts/F	Pac	kin	g	1			Bo	dy/	/Tri	m	S	eat	ts/F	Pacl	kin	g
Chemicals	Carbon Steel	316 Stainless Steel	Alloy 20	Monel	Hastelloy C	EPDM	PEEK	Graphite	PTFE	Reinforced (PTFE)	UHMWP		Chemicals	Carbon Steel	316 Stainless Steel	Alloy 20	Monel	Hastelloy C	EPDM	PEEK	Graphite	PTFE	Reinforced (PTFE)	UHMWP
Tall Oil	в	В	В	В	А	D	А	А	А	А			Varnish	с	А	А	А	А	D	А	А	А	А	А
Tannic Acid	с	В	В	В	В	В	A	А	А	A	A		Vegetable Oils	В	А	А	В	Α	D		А	А	А	
Tartaric Acid	D	Α	Α	В	В	В		А	Α	A	A		Vinegar	D	А	А	В	A	A	Α	А	А	А	Α
Tetraethyl Lead	с	В	В	А			A	А	Α	A			Vinyl Acetate		В	В	В	A	A	Α	А	Α	А	
Thioglycolic Acid		В	В						А	A			Vinyl Chloride, Dry	Α	В	В	В					А	А	
Toluol (Toluene)	Α	Α	Α	А	Α	D	A	А	Α	A	D		Water, Deionized	D	А	А	А					А	А	
Toluene Diisocyanate		А	А						Α	A			Water, Distilled	D	А	А	А	A	В	Α	А	А	А	Α
Transformer Oil	А	А	А	А			A	А	А	A	С		Water, Fresh	с	А	А	А	Α	В	Α	А	А	А	А
Tributyl Phosphate	Α	Α	Α	А		В		А	Α	A			Water, Sea	D	В	В	А					А	А	
Trichlorethylene	в	В	В	В	А	D		А	Α	A	D		Water, Acid Mine	D	В		D	С	A	Α	А	Α	А	Α
Trichloroacetic Acid		D	В	В	Α				Α	A	С		Wax Emulsions	A	А	А	А					Α	А	
Triethanolamine		В	В	В	Α	В		А	A	A	С		White Water	с	В	В	С					Α	А	
Triethylamine		В	В		А				Α	A			Xylene (Xylol), Dry	В	А	А	А	A	D	Α	А	Α	А	D
Triethylene Glycol	с	В	В	В					Α	A			Zinc Acetate		В							А	А	
Trisodium Phosphate		В	В		Α	В		А	Α	A	A		Zinc Chloride	D	D	А	В					Α	А	
Tung Oil	в	А	А	С	А	D	A	А	Α	A			Zinc Bromide		В	В	В	A	В		А	А	А	
Turpentine	в	В	В	В	А	D	A	А	Α	A	D		Zinc Hydrosulfite	Α	А	А	В	A	A			А	А	
Urea	с	В	В	В	Α	В	A	А	A	A	A		Zinc Sulfate	D	В	А	В	A	A	Α	А	А	А	A
Uric Acid		А	А		A		A	A	A	A														

B = Fair

C = Poor

Exploded View 1/2" - 6"

Standards

Compliance With National Standards

Cam-Tite[®] Ball Valves are designed to the following ASME specifications:

ASME B2.1	Pipe Threads
ASME B16.5	Flanges and Flanged Fittings
ASME B16.10	Face-to-Face and End-to-End Dimensions of Valves
ASME B16.11	Socketweld and Threaded Fittings
ASME B16.25	Buttweld Ends
ASME B16.34*	Flanged, Threaded and Weld End Valves
ASME B31.1	Power Piping
ASME B31.3	Chemical Plant and Petroleum Refinery Piping

*Compliance to ASME B16.34 is dependent on the materials of construction selected and the testing specified for each application. Consult the factory for further details.

All standard Cam-Tite Ball Valves are tested and tagged in accordance with the following specifications:

MSS-SP-25	Marking System for Valves
MSS-SP-72	Ball Valves for General Service

In addition, Cam-Tite[®] Ball Valves can be furnished in accordance with the special requirements of the following specifications:

ASME B31.3	Category M Service
API 598	Valve Inspection and Testing
API 607	Firetesting for Soft Seated Quarter Turn Valves
Chlorine Institute Pamphlet 6	Ball Valves for Dry Chlorine Service
NACE Standard MR01-75	Materials for Oilfield Equipment

Material Standards

Cam-Tite[®] body and bonnet investment castings are in accordance with one of the following standards:

Carbon Steel	ASTM A216 GR WCB (Low Temperature: -20°F / -29°C)
Carbon Steel	ASTM A352 GR LCB (Low Temperature: -50°F / -45°C)
Carbon Steel	ASTM A352 GR LC-1 (Low Temperature: -75°F / -60°C)
316 Stainless Steel	ASTM A351 GR CF8M
316 L Stainless Steel	ASTM A351 GR CF3M
Alloy 20	ASTM A351 GR CN7M
Monel	ASTM A494 GR M-35-1
Hastelloy C	ASTM A494 GRs CW-6M or CW-2M
Inconel	ASTM A494 GR CY-40
Nickel	ASTM A494 GR CZ-100
Titanium	ASTM B367 GR C3

Default Cam-Tite[®] Ball Valve cover bolting is in accordance with the following standards:

Carbon Steel	ASTM A193 GR B7
Stainless Steel	ASTM A193 GR B8

Certified Material Test Reports (CMTRs) can be supplied on the above materials. Contact Engineered Valves for additional information on materials not listed.

Ordering Information

How to Order Cam-Tite[®] Ball Valves

The Cam-Tite Ball Valve is designated by a series of configuration numbers that define the valve size (Block A); base body construction (Blocks B1–B4); cover type (Block C); ball / stem material (Block D1); seat material (Block S1); stem seal / gasket materials (Blocks S2-S3); actuation (Blocks N1–N6); and additional options (Blocks D3-L). By selecting the proper code for each of the required blocks, the configuration number can be specified. For a complete listing of the available codes, see pages 49 and 50.

BLOCK	FEATURES	Example 1	Example 2
А	Size	2	1
B1	Body	3010	3215
B2	Buttweld Schedule		
B4	Drain Port		
с	Cover	1	1
D1	Ball / Stem Material	T1	Т3
S1	Seat Material	ST1	ST2
S2	Stem Seal / Gasket Material	SL1	SL2
\$3	Gasket material / Bellows Only		
N1	Actuation		
N2	Actuator Mode		
N3	Actuator Springs		
N4	Fail Position		
N5	Solenoid Valve		
N6	Limit Switches		
D3	Exterior Trim		
D2	Extended Stem		
D4	Optional Fasteners		
E	Handle Options		HD3
F	Locking Device		LDS
к	Optional Preparations		
L	Nace Service		

Example 1: 2-3010-1-T1-ST1-SL1

2" ANSI Class 150# Flanged Carbon Steel Ball Valve with Standard Cover, 316 Stainless Steel Trim, PTFE Seats and Seals, and Hand Lever Operator.

Example 2: 3215-1-T3-ST2-SL2-HD3-LDS

1" ANSI Class 150-300# Socketweld End Alloy 20 Ball Valve with Standard Cover, Alloy 20 Trim, RTFE Seats and Seals, and Oval Handwheel Operator with Stainless Steel Locking Device.

Figure Numbers: Bodies, Covers and Trim

	Size Ran	ge ® Ball Valves (Block A)		Buttweld	Ends Ball Valves (Blo
	Code	Valve Size		Code	Body Material
	0.5	1/2"	200#	3020	Carbon Steel WCB
	0.5	72 3/4"	500#	3120	Carbon Steel LCB
	1	1"		3820	Carbon Steel LC-1
	1.5	1 ¹ /2"		3121	316L Stainless Stee
	2	2"		3221	Alloy 20
	2	2"		3321	Monel
	4	4"		3421	Hastelloy C
	4 6	4 6"		3521	Nickel
	0	0		3621	Titanium
	Flanged I	Ends		3721	Inconel
	_	[®] Ball Valves (Block B1)			
	Code	Body Material	600#	3028	Carbon Steel WCB
150#	3010	Carbon Steel WCB		3128	Carbon Steel LCB
	3110	Carbon Steel LCB		3828	Carbon Steel LC-1
	3810	Carbon Steel LC-1		3129	316L Stainless Stee
	3011	316 Stainless Steel		3229	Alloy 20
	3211	Alloy 20		3329	Monel
	3311	Monel		3429	Hastelloy C
	3411	Hastelloy C		3529	Nickel
	3511	Nickel		3629	Titanium
	3611	Titanium		3729	Inconel
	3711	Inconel			
				Socketw	
300#	3018	Carbon Steel WCB		Cam-Tite	[®] Ball Valves (Blo
	3118	Carbon Steel LCB		Code	Body Material
	3818	Carbon Steel LC-1	150#-300#		Carbon Steel WCB
	3019	316 Stainless Steel		3114	Carbon Steel LCB
	3219	Alloy 20		3814	Carbon Steel LC-1
	3319	Monel		3115	316L Stainless Stee
	3419	Hastelloy C		3215	Alloy 20
	3519	Nickel		3315	Monel
	3619	Titanium		3415	Hastelloy C
	3719	Inconel		3515	Nickel
				3615	Titanium
600#	3026	Carbon Steel WCB		3715	Inconel
	3126	Carbon Steel LCB	COO //	2022	
	3826	Carbon Steel LC-1	600#		Carbon Steel WCB
	3027	316 Stainless Steel		3122	Carbon Steel LCB
	3227	Alloy 20		3822	Carbon Steel LC-1
	3327	Monel		3123	316L Stainless Stee
	3427	Hastelloy C		3223	Alloy 20
	3527	Nickel		3323	Monel
	3627	Titanium		3423	Hastelloy C
	3727	Inconel		3523	Nickel Titanium
	Buttweld	Endo		3623 3723	Inconel
		[®] Ball Valves (Block B1)		2723	Inconei
	Code	Body Material		Threaded	d Ends
150#	3012	Carbon Steel WCB			Ball Valves (Blo
150#	3112	Carbon Steel LCB		Code	Body Material
	3812	Carbon Steel LC-1	150#-300#		Carbon Steel WCB
	3113	316L Stainless Steel		3116	Carbon Steel LCB
	3213	Alloy 20		3816	Carbon Steel LC-1
	3213	Monel		3117	316L Stainless Stee
	3413			3217	Alloy 20
		Hastelloy C Nickel		3317	Monel
	3513	Titanium		3417	Hastelloy C
	3613 3713	Inconel		3517	Nickel
	כווכ	Inconer		3617	Titanium
				3717	Inconel

Block B1)		Threaded Cam-Tite Code	d Ends [®] Ball Valves (Bloc Body Material
l	600#	3024	Carbon Steel WCB
CB		3124	Carbon Steel LCB
B		3824	Carbon Steel LC-1
2-1		3125	316L Stainless Steel
Steel		3225	Alloy 20
		3325	Monel
		3425	Hastelloy C
		3525	Nickel
		3625	Titanium
		3725	Inconel
			Schedule (Block B
CB			End Preparation
B		SCH10	Schedule 10
-1		SCH40	Schedule 40
Steel		SCH80	Schedule 80
			rt (Block B4)
			Drain Port
		D	Body Port with Plug
		Valve Ler	-
		Code	Valve Length
Block B1)		GV	ASME B16.10 Globe
/		Cover (B	lock C)
'CB		Code	Cover
B		1	Standard
2-1		2	Extended
Steel		3	Severe Service
		4	Severe Service with L
		5	Bellows Seal / Manua
		6	Bellows Seal / Actuat
		7	Fire Safe Bellows Sea
		8	Standard with Intern
		9	Extended with Intern
		10	Severe Service with I
CB		11	Severe Service with L
B			and Internals Cage
2-1		12	Body Only
Steel			em (Block D1)
		Code	Ball / Stem Materia
		T1	316SS / 316SS
		T2	Monel / Monel
		Т3	Alloy 20 / Alloy 20
		T4	Hastelloy C / Hastello
		T5	Hastelloy C / Monel
		T6	Monel / Hastelloy C
Block B1)		Т7	316SS / Hastelloy C
		Т8	Inconel 625 / Incone
'CB		Т9	Ceramic / 316SS
IB		T10	Ceramic / Monel
.¤ [-1		T11	Ceramic / Alloy 20
		T12	Ceramic / Hastelloy C
Steel		T13	Nickel / Nickel
		T14	Titanium / Titanium

Threaded Ends lves (Block B1) terial

3525	Nickel
3625	Titanium
3725	Inconel
Buttweld Code SCH10 SCH40 SCH80	Schedule (Block B2) End Preparation Schedule 10 Schedule 40 Schedule 80
Drain Pol Code D	rt (Block B4) Drain Port Body Port with Plug
Valve Ler Code GV	ngth Valve Length ASME B16.10 Globe Valve Length
Cover (B Code 1 2 3 4 5 6 7 8 9 10 11 12	lock C) Cover Standard Extended Severe Service Severe Service with Lantern Ring Bellows Seal / Manual Bellows Seal / Actuated Fire Safe Bellows Seal / Manual Standard with Internals Cage Extended with Internals Cage Severe Service with Internals Cage Severe Service with Lantern Ring and Internals Cage Body Only
Ball / Ste	em (Block D1)
Code	Ball / Stem Material
T1	316SS / 316SS
T2	Monel / Monel
ТЗ	Alloy 20 / Alloy 20
T4	Hastelloy C / Hastelloy C
T5 TG	Hastelloy C / Monel
T6 T7	Monel / Hastelloy C 316SS / Hastelloy C
T8	Inconel 625 / Inconel 625
T9	Ceramic / 316SS
T10	Ceramic / Monel
T11	Ceramic / Alloy 20
T12	Ceramic / Hastelloy C

- Hastelloy C
- ickel
- / Titanium Tantalum / Hastelloy C T15
- T16 304SS / 304SS
- Alloy 20 / Inconel 718 T17
- T18 Tantalum / Nickel
- T19 316SS / 17-4 PhSS

Engineered Valves

Figure Numbers: Actuators, Actuator Accessories and Bonnet Options

Seat Material (Block S1)

Seat Material (Block SI)		
Code	Seat Material	
ST1	PTFE	
ST2	RTFE	
ST3	Fire-Safe RTFE	
ST4	Fire-Safe PTFE	
ST5	UHMW Polyethylene	
ST6	G2000 PEEK	
ST7	G3000 PEEK	
ST9	PTFE / Carbon Filled	
ST10	Fire-Safe Design PTFE / Carbon Filled	
ST11	Fire-Safe Design PTFE (Carbon Filled)	
	RTFE	
ST12	PTFE / CAF FILLED	

Stem Seal / Gasket Material (Block S2)

Code	Stem Seal / Gasket Material	
SL1	PTFE / PTFE	LS2
SL2	RTFE / RTFE	
SL3	UHMWP / UHMWP	LSE
SL4	Graphite / Graphite	
SL5	Graphite / PTFE	LS4
SL6	Graphite / RTFE	
SL7	Graphite / G2000 PEEK	LSS
SL8	Graphite / G3000 PEEK	
SL11	PTFE/TFM1600	LS1

Gasket Material / Bellows Only (Block S3)

Code Gasket Material G1 PTFE G2 RTFE

G3	UHMWP
G4	Graphite
G5	G2000 PEEK
G6	G3000 PEEK

Actuator (Block N1)

Actuator	
Code	Actuator Model
C15	C15 Compact Actuator
C20	C20 Compact Actuator
C25	C25 Compact Actuator
C30	C30 Compact Actuator
C35	C35 Compact Actuator
C45	C45 Compact Actuator
C60	C60 Compact Actuator
C75	C75 Compact Actuator

Compact Actuator Mode (Block N2)

Code	Actuator Model
DA	Double Acting
SR	Spring Return

Compact Actuator Mode (Block N3)

Code	Actuator Springs
1A	1A
1B	1B
2	2
2A	2A
2B	2B
2C	2C
3	3

Compact Actuator

Failure Position (Block N4)	
Code	Failure Position
FO	Fail Open
FC	Fail Closed
Solenoid Valve (Block N5)	

Code Description

	•
SV1	Asco EF8320G184
SV2	Asco EF8320G184
SV3	Asco EF8345G1
SV4	Asco EF8345G1

Actuator Limit Switches (Block N6)

Code Description

LS1N	WESTLOCK 1040NFC2A2M0200 /
	2SPDT / NEMA 4, 4X
LS2N	WESTLOCK 1040NBY2A2M0200 /
	2SPDT / NEMA 4, 4X / BEACON
LS3N	WESTLOCK 2004NBY2A2M0200 /
	2SPDT / NEMA 4, 4X
LS4N	WESTLOCK 2007NBY2B2M0200 /
	2SPDT / NEMA 4, 4X, 7
LS9N	WESTLOCK 2007NBY2E2M0200 /
	2SPDT / NEMA 4, 4X, 7 LESS SOL.
LS10N	WESTLOCK 9479NBY2B2M0600 /
	2SPDT / NEMA 4, 7, 9
LS15N	WESTLOCK 9358NBY2A2M0600 /
	2SPDT / NEMA 4, 4X

Exterior Trim (Block D3)

Code	Trim Material
ET1	Stainless Steel Gland, Bellevilles, Washers and Nuts
ET2	Stainless Steel Gland, Washers and Nuts / Inconel Bellevilles
ET3	Inconel Gland, Washers, Nuts and Bellevilles
ET4	Hastelloy Gland, Washers and Nuts / Inconel Bellevilles

Extended Stem (Block D3)

Code	Extension Type
EXTSP	Stem Extension w/o Bracket
EXTSPBK	Stem Extension w/ Bracket

Optional Fasteners (Block D4)

Code	Material
BOLTING	
B1	A193 GR B7
B2	A320 GR L7
B3	A193 GR B8
B4	Inconel
B5	Hastelloy
B6	Alloy 20
B7	A193 GR B7 / PTFE Coated
B8	Monel
B9	A193 GR B7M

Optional Fasteners (Block D4)

opeiona	
Code	Material
STUDS / I	NUTS
SN1	A193 GR B7 / A194 GR 2H
SN2	A320 GR L7 / A194 GR L7
SN3	A193 GR B8 / A194 GR B8
SN4	Inconel / Inconel
SN5	Hastelloy / Hastelloy
SN6	Alloy 20 / Alloy 20
SN7	A193 GR B7 / PTFE Coated
SN8	Monel / Monel

Handle Options (Block E)

Code Material HANDLE HD1 Stainless Steel

OVAL HANDWHEEL

HD2	Carbon Steel
HD3	Stainless Steel

CHAINWHEEL

HD5	Carbon Steel Horizontal Line
HD6	Carbon Steel Vertical Line
HD7	Stainless Steel Horizontal Line
HD8	Stainless Steel Vertical Line

Locking Device (Block F)

Code	Material
LDS	Stainless Steel

Optional Preparation (Block K)

Code	Preparation
CLV	Chlorine / Vented Body
HF	Hydrofluoric Acid
HFV	HF Acid / Vented Body
OX	Oxygen
PHO	Phosgene
PHOV	Phosgene / Vented Body
ТОВ	Tobacco Service (No PTFE)
TOBV	Tobacco Service / Vented
V	Vented Body
NL	No Lubricant
VNL	Vented Body / No Lubricant
VB	Vented Ball
CLN	Cleaned and bagged
CLNV	Vented body / cleaned and bagged

Nace Service (Block L)

Nace Service
Nace 1 Service
(Above ground, uninsulated)
Nace 2 Service
(Above ground, insulated)
Nace 3 Service (Buried)

Notes

www.engvalves.com

ITT Engineered Valves: 65 years of Providing Quality, Innovative Solutions

ITT Engineered Valves has earned the reputation for delivering the highest quality, innovative valve solutions for a wide range of industrial fluid control needs. These best in-class quality valves have been the foundation for industries such as Mining, Power Generation, Pollution Control, Pulp and Paper, Chemical Processing, Water Treatment, Pharmaceutical, Food and Beverage, and Bio-Processing.

Through both standard and custom designed valve assemblies, ITT Engineered Valves is your partner in providing the best quality and value engineered solutions for your unique flow control needs.

- 1. Dia-Flo[®] Diaphragm Valves
- 2. Fabri-Valve[®] Knife Gate, Slide Gate, Wedge Gate and Custom-Fabricated Valves
- 3. Cam-Tite® Hazardous and Critical Duty Ball Valves
- 4. Cam-Line[®] Plastic Lined Ball Valves
- 5. Skotch[®] Burner Safety Shut-Off valves

Lancaster, PA Facility

Amory, MS Facility

ITT Engineered Valves 33 Centerville Road Lancaster, PA 17603, USA Tel: +1 (717) 509-2200

Cam-Line, Cam-Tite, Dia-Flo, EnviZion, Pure-Flo, Skotch ITT Engineered Valves 1110 Bankhead Avenue Amory, MS 38821, USA Tel: +1 (662) 256-7185 Fabri-Valve ITT Bornemann GmbH 31683 Obernkirchen Germany Tel: +49 5724 390-0 EnviZion, Pure-Flo

